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Abstract

We present a general approach for simulating and controlling a hu-
man character that is riding a bicycle. The two main components
of our system are offline learning and online simulation. We sim-
ulate the bicycle and the rider as an articulated rigid body system.
The rider is controlled by a policy that is optimized through of-
fline learning. We apply policy search to learn the optimal policies,
which are parameterized with splines or neural networks for dif-
ferent bicycle maneuvers. We use Neuroevolution of Augmenting
Topology (NEAT) to optimize both the parametrization and the pa-
rameters of our policies. The learned controllers are robust enough
to withstand large perturbations and allow interactive user control.
The rider not only learns to steer and to balance in normal riding sit-
uations, but also learns to perform a wide variety of stunts, includ-
ing wheelie, endo, bunny hop, front wheel pivot and back hop.
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1 Introduction

The bicycle was voted as the best invention since the 19th century
[BBC 2005] because it is an inexpensive, fast, healthy and envi-
ronmentally friendly mode of transportation. However, riding a
bicycle is nontrivial due to its inherently unstable dynamics: The
bike will fall without forward momentum and the appropriate hu-
man control. Getting onto the bike, balancing, steering and riding
on bumpy roads all impose different challenges to the rider. As one
important child development milestone, learning to ride a bicycle
often requires weeks of practice. We are interested to find whether
it is possible to use a computer to mirror this learning process. In
addition to the basic maneuvers, the most skillful riders can jump
over obstacles, lift one wheel and balance on the other, and perform
a large variety of risky but spectacular bicycle stunts. Perform-
ing stunts requires fast reaction, precise control, years of experi-
ence and most importantly, courage, which challenges most people.
Can we design an algorithm that allows computers to automatically
learn these challenging but visually exciting bicycle stunts?
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Figure 1: A human character performs stunts on a road bike, a
BMX bike and a unicycle.

Designing an algorithm to learn to ride a bicycle presents unique
challenges. Riding a bicycle involves complex interactions between
a human rider and a bicycle. While the rider can actively control
each joint, the bicycle is a passive system that can only be con-
trolled by the human rider. To control a single degree of freedom
(DOF) of a bicycle, coordinated motions of multiple DOFs of the
rider are required. Moreover, the main difficulty in locomotion is
to control an under-actuated system by exploiting external contact
forces. Manipulating contact forces on a bicycle is indirect. All
of the rider’s control forces need to first go through the bicycle dy-
namics to affect the ground reaction forces and vice versa. This
extra layer of bicycle dynamics between the human control and the
contact forces adds another layer of complexity to the locomotion
control. Balance on a bicycle is challenging due to its narrow tires.
The limited range of human motion on a bicycle makes balance
even harder. When the character’s hands are constrained to hold
the handlebar and their feet are on the pedals, the character loses
much of the freedom to move various body parts. He or she can-
not employ ankle or hip postural strategies or wave their arms to
effectively regulate the linear and the angular momenta.

Balance during bicycle stunts is far more challenging than normal
riding. As a stunt example that illustrates the balance issues we plan
to tackle, consider a bicycle endo (bottom-left image of Figure 1), in
which the rider lifts the rear wheel of the bicycle and keeps balance
on the front wheel. In this pose, the rider encounters both the lon-
gitudinal and lateral instabilities. The small contact region of one
wheel and the lifted center of mass (COM) due to the forward lean-
ing configuration exacerbate the balance problem. Furthermore, the
off-the-ground driving wheel makes any balance strategies that in-
volve acceleration impossible. The unstable configurations and the
restricted actions significantly increase the difficulty of balance dur-
ing a stunt.

This paper describes a complete system for controlling a human
character that is riding a bicycle in a physically simulated environ-
ment. The system consists of two main components: simulating the
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motion and optimizing the control policy. We simulate the bicycle
and the rider as an articulated rigid body system, which is aug-
mented with specialized constraints for bicycle dynamics. The sec-
ond component provides an automatic way to learn control policies
for a wide range of bicycle maneuvers. In contrast to many optimal
control algorithms that leverage the dynamics equations to compute
the control signals, we made a deliberate choice not to exploit the
dynamics equations in our design of the control algorithm. We be-
lieve that learning to ride a bicycle involves little reasoning about
physics for most people. A four-year-old can ride a bicycle without
understanding any physical equations. Physiological studies show
that learning to ride a bicycle is a typical example of implicit mo-
tor learning [Chambaron et al. 2009], in which procedural memory
guides our performance without the need for conscious attention.
Procedural memory is formed and consolidated through repetitive
practice and continuous evolution of neural processes. Inspired by
the human learning process, we formulate a partially observable
Markov decision process (POMDP) and use policy search to learn
a direct mapping from perception to reaction (procedural memory).

Both prior knowledge of bicycle stunts and an effective searching
algorithm are essential to the success of policy search. After study-
ing a variety of stunts, we classify them into two types. We ap-
ply feed-forward controllers for the momentum-driven motions and
feedback controllers for the balance-driven ones. We study videos
of stunt experts to understand their reactions under different situa-
tions and used this information to design the states and the actions
of our controllers. We employ a neural network evolution method
to simultaneously optimize both the parametrization and the param-
eters of the feedback controllers.

We evaluate our system by demonstrating a human character rid-
ing different types of bicycles and performing a wide variety of
stunts (Figure 1). We also evaluate the importance of optimizing the
parametrization of a policy. We share our experiences with differ-
ent reinforcement learning algorithms that we have tried throughout
this research project.

2 Related Work

Prior research that inspired our work include techniques from char-
acter locomotion control, the study of bicycle dynamics, and algo-
rithms in reinforcement learning. We will review the work in each
of these sub-areas in turn.

Character locomotion control. Controlling character locomo-
tion in a physically simulated environment has been extensively
studied in both computer animation and robotics. Researchers have
investigated different forms of locomotion, including walking [Yin
et al. 2007; Wang et al. 2012], running [Hodgins et al. 1995; Kwon
and Hodgins 2010], flying [Wu and Popović 2003] and swimming
[Grzeszczuk and Terzopoulos 1995; Tan et al. 2011]. One central
problem of locomotion is balance, which can be controlled by ex-
erting virtual forces [Pratt et al. 2001; Coros et al. 2010], applying
linear feedback [Laszlo et al. 1996; Yin et al. 2007; da Silva et al.
2008; Coros et al. 2010], using nonlinear control policies [Muico
et al. 2009], planning the contact forces [Muico et al. 2009; Tan
et al. 2012], employing reduced models [Tsai et al. 2010; Kwon and
Hodgins 2010; Mordatch et al. 2010; Coros et al. 2010; Ye and Liu
2010] and training in stochastic environments [Wang et al. 2010].
Among many different techniques, Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [Hansen 2009] is one of the most
frequently applied optimization methods for locomotion control.
We use CMA to optimize the control policies for momentum-driven
bicycle maneuvers.

Compared to walking and running, fewer studies focus on loco-

motion that involves a character that is controlling another device
with complex dynamics. Van de Panne and Lee [2003] built a 2D
ski simulator and that relies on user inputs to control the charac-
ter. This work was later extended to 3D by Zhao and Van de Panne
[2005]. Planar motions, including pumping a swing, riding a see-
saw and even pedaling a unicycle, were studied [Hodgins et al.
1992]. Hodgins et al. [1995] demonstrated that normal cycling
activities, including balance and steering, can be achieved using
simple proportional-derivative (PD) controllers for the handlebar
angle. These linear feedback controllers are sufficient for normal
cycling, but they cannot generate the bicycle stunts demonstrated
in this paper.

Our system resembles stimulus-response control proposed in sev-
eral early papers. Van de Panne and Fiume [1993] optimized a
neural network to control planar creatures. Banked Stimulus Re-
sponse and genetic algorithms were explored to animate a variety
of behaviors for both 2D [Ngo and Marks 1993] and 3D charac-
ters [Auslander et al. 1995]. Sims [1994] used genetic program-
ming to evolve locomotion for virtual creatures with different mor-
phologies. Contrary to the general belief that the stimulus-response
framework does not scale well to high-dimensional models and
complex motions [Geijtenbeek and Pronost 2012], we demonstrate
that this framework can indeed be used to control a human character
performing intricate motions.

Bicycle dynamics. Early studies of bicycle dynamics date back
to more than a century ago. As described in Meijaard et al. [2007],
Whipple [1899] and Carvallo [1900] independently derived the first
governing equations of bicycle dynamics. These equations were re-
vised to account for the drag forces [Collins 1963], tire slip [Singh
1964] and the presence of a rider [Van Zytveld 1975]. Rankine
[1870] discussed the balance strategy of “steering towards the di-
rection of falling”, which forms the foundation of many studies on
bicycle balance control, including ours. Despite this long history
of research and the seemingly simple mechanics of bicycles, some
physical phenomena exhibited by the bicycle movement still remain
mysterious. One example is that a moving bicycle without a rider
can be self-stable under certain conditions. In addition to the early
belief that this phenomenon was attributed to gyroscopic effects
of the rotating wheels [Klein and Sommerfeld 1910] or the trail1

[Jones 1970], Kooijman et al. [2011] showed that the mass distri-
bution over the whole bicycle also contributes to the self-stability.
Even though the dynamic equations provide us with some intuition,
we do not use this information directly in our algorithm because
this is tailored specifically to normal riding situations where both
tires touch the ground. This will be a major restriction in bicycle
stunts.

Reinforcement learning. The bicycle control problem can be
formulated and solved as a reinforcement learning problem. Value
iteration is a widely-used reinforcement learning algorithm in com-
puter graphics. Researchers have successfully applied (fitted) value
iteration to generalize motion capture data [Treuille et al. 2007;
Levine et al. 2012], to carry out locomotion tasks [Coros et al.
2009], and to manipulate objects with hands [Andrews and Kry
2013]. Applying value iteration to continuous state and action
spaces is nontrivial because discretizing the space does not scale
well to high dimensions [Sutton and Barto 1998] and using function
approximation often converges to a poor local minimum or might
not converge at all [Thrun and Schwartz 1993; Boyan and Moore
1995]. Policy search [Ng and Jordan 2000] is another reinforcement
learning algorithm, which directly searches for a mapping between

1The trail is the distance between the front wheel ground contact point
and the steering axis.
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Figure 2: Overview of our algorithm.

the state space and the action space. Many studies on locomotion
control [Yin et al. 2008; Wang et al. 2009; Coros et al. 2011; Tan
et al. 2011; Wang et al. 2012; Geijtenbeek et al. 2013] performed
policy search on parameterized controllers.

The bicycle control problem has been investigated in the rein-
forcement learning literature. Randløv and Alstrøm [1998] used
SARSA(λ), a model free reinforcement learning algorithm, to learn
to balance a bicycle and ride to a goal. This algorithm requires a
large number of simulation trials and the converged result is still
not ideal. Ng and Jordan [2000] applied policy search to the same
bicycle learning problem. They parameterized the policy with neu-
ral networks and used the policy gradient to find the optimal net-
work weights. The resulting controller significantly outperformed
the results in the previous study. Our method is inspired by the
policy search algorithm. However, to adopt this algorithm to learn
more challenging tasks, we need to overcome two difficulties: First,
we do not have reliable policy gradient information because of the
frequent contact events. Second, we do not know a good pol-
icy parametrization, which is difficult to design manually by trial
and error for each bicycle stunt. We use NEAT [Stanley and Mi-
ikkulainen 2002], which was first introduced to graphics by Allen
and Faloutsos [2009], to address both difficulties. With appropri-
ate choices of the states and actions, combining policy search with
NEAT can successfully learn the most demanding balance tasks on
a bicycle. Please read Section 5.2.3 for more details about NEAT.

3 Overview

We have designed a system that allows a virtual human character to
learn to ride a bicycle and perform a wide variety of stunts. The goal
of our system is to learn a control policy that initiates a particular
action at any state. Given the state space, the action space and the
reward function for each bicycle task, the offline learning subsys-
tem starts with an initial set of candidate policies, iteratively eval-
uates (using simulation) and evolves them (using CMA or NEAT)
until the optimal policy is found. This optimal policy allows the
user to interact with the bicycle simulation in real time by giving
commands such as steering to the left. The online simulation sub-
system first extracts the observable states, such as the tilt angle,
the falling speed, and the actual and the user-specified handlebar
angle. It then queries the policy to determine appropriate actions,
such as turning the handlebar at a certain speed to fulfill the user’s
command while still maintain the balance of the bicycle. Execut-
ing actions, such as turning the handlebar, requires a coordinated
full-body motion of the rider. An Inverse Kinematics (IK) solver
maps the compact set of actions to the rider’s full-body pose. The
simulator tracks this desired pose and at the same time simulates
the dynamics of both the human rider and the bicycle. Figure 2
illustrates the main components of our system.

4 Bicycle and Rider Simulation

Our simulator is based on Open Dynamic Engine (ODE) [Smith
2008], but we augmented it with additional constraints to simulate
both the bicycle and the human rider. We treat the bicycle and the
rider as a system of articulated rigid bodies. Since the dynamics
is represented in the maximal coordinates, each rigid body has six
DOFs and its dynamic equation is
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] [

v̇
ω̇

]

=

[

mg

−İω
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where M is the mass matrix, I is the inertia tensor, v and ω are
the linear and angular velocities, f and τ are the constraint forces
and torques, which come from the bicycle chains, the joints, the
actuators and the contacts. JT is the transposed Jacobian matrix
that maps the constraint forces and torques to the body.

Chains transfer power from the pedals to the rear wheel on a bi-
cycle. We use a linear equality constraint to realize the effect of a
bicycle chain.

n
T (αωA − ωB) = 0 (2)

where bodies A and B are the pedals and the rear wheel. n is the
common direction of their rotational axes and α represents the gear
ratio, which is the ratio between the number of teeth on the chain-
ring and the number on the rear sprocket. Note that eq. (2) models
a fixed-gear bicycle. In some tasks, we disabled this constraint to
mimic the effect of the free wheel, allowing the rider to glide with-
out pedaling.

The other constraints are standard from the implementation of
ODE. For completeness of presentation, we include a brief descrip-
tion of such constraints in the supplementary material. Note that
we use the actuator constraints instead of the traditional PD ser-
vos to track a desired pose. We have found that using the actuator
constraints enables us to simulate at large time steps (0.01s), which
significantly speeds up the computation.

We made several simplifications in the simulation. We used ball
joints to attach the rider’s feet to the pedals. This treatment is sim-
ilar to wearing toe clips in the real world. We also used ball joints
to connect the rider’s hands with the handlebar. For some tasks in
which the rider is seated, we further constrained the relative posi-
tion and orientation between the rider’s pelvis and the bicycle seat.

5 Learning to Ride a Bicycle

5.1 Markov Decision Process

We formulate the bicycle control problem as a POMDP. A Markov
decision process (MDP) is a tuple (S,A,R,D, Psas′ , γ), where S
is the state space; A is the action space; R is the reward function;
D is the distribution of the initial state s0; Psas′ is the transition
probability; and γ ∈ [0, 1] is the discount factor. For example, in
the bicycle balance task, we choose the state space S to include the
tilt angle of the bike, the tilting speed and the handlebar angle. We
choose the action A to be turning the handlebar at a certain speed.
We choose the reward function R at the state s to be

R(s) =

{

1 if the bicycle remains upright,
0 otherwise.

(3)

The initial state s0 is drawn from a random perturbation near the
upright orientation of the bicycle. The state transition is calculated
using simulation, and we do not discount the rewards (γ = 1).



A policy is a mapping from states to actions: π : S 7→ A. The
return of a policy is the accumulated rewards along the state trajec-
tory starting at s0 by following the policy π for N steps.

V π(s0) =

N
∑

i=0

R(si)

The value of a policy is the expected return with respect to the ran-
dom initial state s0 drawn from D.

V (π) = Es0∼D[V π(s0)] (4)

The optimal solution of an MDP is the policy that has the maximum
value π∗ = argmaxπ V (π). The optimal policy in the bicycle
balance example decides how to turn the handlebar under different
situations so that the bicycle can stay upright for the longest time.

Our MDP is partially observable because we choose to observe only
a selected subset of all the simulation states. We have found that
focusing on a small number of relevant states for each task results
in a more efficient learning process. The actions are also selected
based on our prior knowledge of the task. Table 1 and 2 summarize
all the states and actions used across our different examples. The
25 states in Table 1 may seem exhaustive, but we only use a subset
of them (typically not more than eight states) for each task.

5.2 Policy Search

We apply policy search to optimize the control policies. Unlike
value iteration, policy search can be easily applied to MDPs in
high dimension and with continuous state and action spaces. This
algorithm searches for the optimal policy within a parameterized
functional space π∗ ∈ Π. During policy search, one or more ran-
dom policies are generated as an initial guess. These candidates
are evaluated and improved iteratively. Policy improvement can
be guided using the policy gradient [Ng and Jordan 2000], trajec-
tory optimization [Levine and Koltun 2013] or other optimization
techniques [Heidrich-Meisner and Igel 2008]. Policy search ends
when the iteration converges or the maximum number of iterations
is reached.

5.2.1 Policy Parametrization

We use two types of parametrizations for the bicycle control prob-
lem: splines for feed-forward control and neural networks for feed-
back control. We found that most of the stunts can be categorized
into momentum-driven, balance-driven or a combination of the two.
The momentum-driven stunts involve vigorous full body motions
to manipulate the bicycle to a desired orientation. Coordinated full
body motions with large magnitude are essential, but the short dura-
tion of this type of stunts makes balance easy to maintain. For this
reason, we use feed-forward controllers and represent the action
trajectories as cubic Hermite splines. Assuming that the number of
control points is given, the parameters to optimize are the time and
the value of the control points2.

Balance-driven stunts require that the rider carefully adjusts his or
her COM and maintains a stunt pose for a longer period of time.
Feedback balance control is vital to the duration of the performance,
which determines the success or failure of the stunt. We use neural
networks for their ability to approximate a wide range of functions.
The inputs to a network are the observed states, and the outputs
are the actions. Figure 5 Left illustrates a simple neural network

2We do not optimize the tangents at the control points and we set them
to be zero.

State Description
t time (used in the feed-forward controllers)
θ handlebar angle
α roll angle of the bike (tilt left/right)
α̇ roll speed
β pitch angle of the bike

β̇ pitch speed
γ yaw angle of the bike
γ̇ yaw speed
vr rear wheel linear speed
vf front wheel linear speed
hr rear tire height above the ground
hf front tire height above the ground
x pelvis position along x-axis
y pelvis position along y-axis
z pelvis position along z-axis
φ torso orientation in the Sagittal plane
ψ torso orientation in the Coronal plane
χ torso orientation in the Transverse plane

φ̇ torso angular speed in the Sagittal plane

ψ̇ torso angular speed in the Coronal plane
χ̇ torso angular speed in the Transverse plane
∆θ difference between actual and desired handlebar angle
∆β difference between actual and desired pitch angle
∆vr difference between actual and desired rear wheel speed
∆vf difference between actual and desired front wheel speed

Table 1: States and their descriptions. The rider’s pelvis position,
torso orientation and angular velocity are calculated in the bicycle
frame’s coordinates.

Action Description

θ̇ steering
v̇r accelerating or braking
v̇f accelerating or braking on a front-wheel-driven bicycle
τf front braking
ẋ pelvis motion along x-axis
ẏ pelvis motion along y-axis
ż pelvis motion along z-axis

φ̇ torso motion in the Sagittal plane

ψ̇ torso motion in the Coronal plane
χ̇ torso motion in the Transverse plane
x̃ desired pelvis position along x-axis
ỹ desired pelvis position along y-axis
z̃ desired pelvis position along z-axis

φ̃ desired torso orientation in the Sagittal plane

Table 2: Actions and their descriptions. The rider’s pelvis and
torso movements are relative to the bicycle frame’s coordinates.

that directly connects the input and the output layers. The output of
neuron i is

vi = σ(
∑

j

wijvj)

where wij is the connection weight between neuron i and j, and σ
is the sigmoid function σ(x) = 1/(1 + e−x).

Parametrization determines the potential quality of the optimal pol-
icy. The network shown in Figure 5 Left is too simple for represent-
ing a complex policy required by bicycle stunts. However, it is not
clear how to manually design the network structure, given the con-
trol policies of unsuccessful stunts. For this reason, we use NEAT
to search for both the structure of the neural network and its weights
simultaneously, which finds far better policies than searching over a
fixed network. Figure 5 Right demonstrates the learned network for



Figure 3: A character steers the road bike towards the green arrow.

Figure 4: A character rides down a set of stairs without falling over.

Figure 5: Left: A simple neural network with input and output
layers that are directly connected. Right: A neural network learned
using our algorithm for balancing on the front wheel. Blue arrows
mean negative weights while red mean positive weights. The width
of the arrows encodes the magnitude of the weights.

the balance task of a bicycle endo using NEAT. See Section 5.2.3
for more details.

5.2.2 Policy Evaluation

To evaluate a policy, we formulate a reward function in the follow-
ing form:

R(s) = Rt(s) + wRr(s) (5)

where Rt and Rr are task-specific and regularization terms respec-
tively. w is the weight.

We use eq.(3) as the task-specific reward for balance-driven tasks.
As the reward is accumulated over time, the return counts the num-
ber of frames that the bicycle stays upright. The task-specific re-
ward varies for each momentum-driven stunt. For example, the re-
ward for initiating an endo (lifting the rear wheel) is to maximize
the negative pitch angle of the bike Rt = −β. We refer the read-
ers to Section 6 and the supplementary material for more detailed
descriptions of task-specific rewards.

Given the task-specific reward term alone, multiple optimal policies
could exist. Taking the balance task as an example, a policy that
rides in a straight line and another that oscillates in a sinusoidal
path by periodically swinging the handlebar can both balance well
and thus yield the same value. The regularization term is mainly
used to eliminate this ambiguity. We use the regularization term
Rr = 1

|θ|+ε
to express our preference of riding straight. In our

examples, all the regularizers are in the form of

Rr =
1

|X|+ ε

where X can be substituted by α for the upright bicycle position,
∆θ for the desired steering angle, ∆β for the desired pitch angle,
∆v for the desired speed, (x, y, z) and (φ, ψ, χ) for small changes
of rider’s pelvis position and torso orientation. A small number ε in
the denominator is used to bound the reward.

We do not explicitly minimize the rider’s effort in the reward func-
tion because it is difficult to balance the effort minimization objec-
tive and the task-specific objective for difficult stunt actions. How-
ever, we limit the maximum actuated joint torques of the rider in the
simulation to ensure that the rider does not possess super-human
strength.

We run multiple simulations with different initial configurations s0,
which are sampled from random perturbations of the default bicycle
velocity and orientation, to evaluate the value of a policy. At each
simulation step, our algorithm calculates the reward for the current
state, and accumulates this until the bicycle falls or after 1000 time
steps. The average return of all the simulations is the value of the
policy.

5.2.3 Policy Improvement

Many policy improvement methods utilize the policy gradient
[Peters and Schaal 2008] to perform iterative ascending operations.
However, our simulation of bicycle stunts involves frequent discrete
events such as establishing and breaking contact, which invalidates
the gradient information. For this reason, we use sample-based
stochastic optimization techniques. We apply CMA to search for
the feed-forward controllers since the parametrization of splines is
fixed. We use NEAT to search for feedback controllers, includ-
ing the structure and the weights of the neural network. NEAT has
many similarities to genetic algorithms, but it is tailored to the cre-
ation of neural networks. We will describe NEAT briefly below.
For further details we refer readers to the original paper [Stanley
and Miikkulainen 2002].

NEAT iteratively performs evaluation, selection, crossover and mu-
tation. To maximize the value of a policy, NEAT starts with a
simple network structure, in which the input and the output lay-
ers are directly connected. A population of such networks with
random weights is drawn as an initial guess. These candidate poli-
cies are evaluated and the top 20% are selected to survive. Pairs of



Figure 6: A character lifts the front wheel to ride over a curb.

Figure 7: A character performs an endo and balance on the front wheel.

randomly-selected surviving policies are crossed over to produce a
new generation (more on this below). Mutations (with low proba-
bility) can perturb connection weights, add a neuron or add a con-
nection. Note that the addition of a neuron or a connection com-
plexifies the network structure and enriches the class of functions
that it can represent.

Crossover is nontrivial in NEAT because the parent neural net-
works can have different topologies. To overcome this difficulty,
the newly-added neuron or connection is assigned a unique inno-
vation number, which tells the history of the mutation and how to
match up neurons or connections between parents during crossover.
The neurons or connections that share the same innovation number
across parents are from the same ancestor, which will be inherited
randomly by the child sample. The neurons or connections that
have no counterparts in the other parent are from different muta-
tions. They will be inherited from the parent with the higher value.

The evolution ends when the policy values do not increase over a
certain number of iterations or the maximum number of iterations
is reached.

6 Results

In this section we describe the results of our system. Please watch
the accompanying video for the bicycle riding and stunt animations.
Our system was implemented in C++, and we used ODE with addi-
tional chain constraints to simulate both the bicycle and the human
rider. The simulator runs in real time on a desktop workstation with
a 2.26GHz CPU and 4GB of memory. We generated 90 samples
per iteration and 50 iterations for offline policy search. The com-
putations were distributed across 16 CPU cores on a cluster. The
learning time ranges from a few minutes to half an hour depending
on the number of simulations used to estimate the expected return
(eq. 4). Table 3 summarizes the choices of states and actions for
each bicycle task. All the learned neural network structures can be
found in the supplementary material.

We designed three different bicycles and a unicycle to test our con-
trollers on a variety of tasks. Road bikes (Figure 3) are designed
to travel at speed on paved roads. They have very narrow tires to
reduce the rolling resistance. The seats are mounted high so that
the riders can bend their upper bodies down for less air resistance.
We use a BMX bike (Figure 7) for stunts. BMX bikes are usually
considerably smaller for nimble and agile handling. They have fat
tires to facilitate balance and to increase traction. BMX bicycle
parts can often be customized to meet the needs of different stunts.

High wheelers (Figure 10) are an old style of bicycle appearing in
the late 19th century. They have a large front wheel and a much
smaller rear wheel. This peculiar design makes high wheelers diffi-
cult to ride due to the center of mass being high and not far behind
the front wheel. Any sudden stop could send the rider over the
handlebars. A unicycle (Figure 11) has only one wheel and no han-
dlebar. The rider needs to be concerned about the balance in both
the longitudinal and the lateral directions. Different cycle designs
greatly affect the handling characteristics and change the behavior
of the riders. This variety puts the generality of our algorithm to the
test. We modeled all the cycles and calculated their mass properties
in SolidWorks.

Balance and steering. Riding a bicycle requires balance and
steering. Balance can be maintained by steering toward the falling
direction, which generates centrifugal force to push the bike up-
right. Figure 3 shows that our learned controller enables the rider
to balance and steer the bike towards a user-specified direction. The
bike follows the green arrow closely even when the user changes the
desired direction abruptly. This agile steering behavior is achieved
through “counter-steering”: a momentarily steering in the oppo-
sition direction to initiate a sharp turn [Rankine 1870], which
emerged automatically from the policy search. We also tested the
robustness of our balance and steering controller on a bumpy ter-
rain, which is represented as a noisy height field sampled from a
uniform distribution h ∼ U(0, 0.05) (unit: meter). Even though
the bicycle jumps and the handlebar is perturbed constantly, the

Task States Actions
momentum-driven

going over curbs t, β v̇r, φ̃
endo (lifting) t, β τf , ỹ, z̃

front wheel pivot t, γ̇ θ̇, τf , ỹ, z̃
bunny hop t, hf , hr ỹ, z̃
balance-driven

balance and steering θ,∆θ, α, α̇ θ̇

wheelie α, α̇, β, β̇,∆β, vr, ψ, ψ̇ v̇r, ψ̇

endo (balance) θ, α, α̇, β, β̇,∆β θ̇, τf
back hop α, α̇, β, β̇,∆β, x, y, z ẋ, ẏ, ż

high wheeler (stunt) β, β̇,∆β,∆vf v̇f
unicycle α, α̇, β, β̇, vr,∆vr, χ v̇r, χ̇

Table 3: Choices of states and actions for each bicycle task. Note
that in the momentum-driven tasks, the actions only depend on time
t while the remaining states are used to compute the reward.



Figure 8: A character completes a quick 180-degree turn by pivoting the bicycle on the front wheel.

Figure 9: A character performs the American bunny hop over a clown lying on the ground.

rider still manages to balance and closely follows the desired direc-
tion. In addition, the accompanying video shows an initial starting
motion, in which the rider’s left foot is scripted to push the ground
and move towards the pedal. Based on this single trajectory of foot
and the learned balance policy, we used IK to generate the full-body
motion of the starting phase.

Going down stairs. Figure 4 shows the character riding down a
series of stairs. Each step is 0.15m high and 0.8m wide. We used the
same balance controller as in the previous example. This balance
task is more challenging because the frequent loss of contact and
the sudden collisions between the front tire and the ground narrow
the window of effective control and introduce large perturbations.
Initially, the rider needs to make large corrections with the handle-
bar to keep balance when the forward speed is low. As the bicycle
travels faster, the corrections become smaller and steadier.

Going over curbs. Riding over curbs (Figure 6) can be per-
formed by lifting the front wheel using feed-forward control only.
We therefore parameterized the actions with two splines (Table 3)
and trained the controller using CMA. We used a task-specific re-
ward function to maximize the pitch of the bicycle Rt = β dur-
ing lifting. In the animation, as the bicycle approaches a curb
(0.12m high), the rider first leans forward and then pushes her up-
per body backwards. When the arms are stretched out to the max-
imum length, the sudden deceleration of the upper body pitches
the whole bike upwards. The pitch angle is further increased by
pedaling faster. This sequence of highly coordinated movements is
discovered automatically by the policy search algorithm. Once the
front wheel goes over the curb, the balance controller takes over
and keeps the bike upright when the rear wheel hits the curb.

Real time user interaction. A user can interact with our bike
simulation in real time. We video captured a sequence that shows a
person using a joystick that is equipped with motion sensors to con-
trol the rider and the bicycle. The rider goes over a curb, survives a
crosswind, goes down a set of stairs, and follows a curvy path to the
goal. Note that the user only gives high level commands such as the
desired steering angle and the timing of lifting the front wheel. The
balance, the actual steering and the rider’s motions are all controlled
by the policy learned from the offline training process.

Wheelie. A wheelie is a stunt maneuver in which the rider first
lifts the front wheel and maintains balance on only the rear wheel.
Lifting the front wheel on a BMX bike is considerably easier than
on a road bike due to the shorter distance between the wheels. It

can be achieved by increasing the speed of pedaling without any
noticeable upper body movements. For this reason, we used only a
feedback controller (Table 3) to perform a wheelie, including both
the initial lift and the later balance. Once the front wheel leaves the
ground, the rider adjusts the forward speed to keep the desired pitch
angle. He leans his upper body to the left or to the right to correct
any lateral instability.

Endo. Figure 7 shows an endo. In contrast to a wheelie, an endo
lifts the rear wheel and balances on the front wheel. In spite of its
symmetry to a wheelie, an endo requires an entirely different set of
skills and environments. Endos are usually performed on a gentle
downward slope, which provides the needed forward momentum
when the driving wheel is off the ground. We used a slope of 2.5
degrees in our example. We first search for a feed-forward con-
troller that maximizes the negative pitch angle Rt = −β to initiate
the stunt. The resulting controller slowly moves the rider’s pelvis
to the back, and then quickly throws it to the front to lift the rear
wheel.

The feed-forward controller is succeeded by a feedback balance
controller. To maintain an endo, the rider continuously applies or
releases the front brake for longitudinal balance and steers the han-
dlebar towards the direction of leaning for lateral balance. This
stunt is especially challenging. If the pitch angle is too large, when
the COM is above or in front of the front tire contact, such a gentle
slope cannot provide enough acceleration to prevent overturning. If
the pitch angle is too shallow, to prevent the rear wheel from drop-
ping to the ground, braking hard will quickly halt the bicycle and
make the balance strategy of “steering toward falling” ineffective.
This complicated coupling between the pitch angle, the speed and
the lateral balance makes heavy demands on the policy search algo-
rithm. NEAT successfully finds a policy that can maintain balance
for an extensively long period of time. Figure 5 Right illustrates the
complex neural network required for this task.

In the accompanying video, we also demonstrate the learning pro-
cess of an endo. The animation shows the resulting balance con-
troller after one, five and ten iterations. As more iterations are fin-
ished, the rider gradually masters an endo and maintains balance
for a longer period of time.

Front wheel pivot. A front wheel pivot (Figure 8) is a fast way
to turn the bicycle 180 degrees by pivoting on the front wheel.
We used a feed-forward controller and applied two separate task-
specific rewards during two phases of this motion. The first reward



Figure 10: A character rides a high wheeler and performs a stunt in which he rides backward on a single wheel.

Figure 11: A clown rides a unicycle.

function maximizes the angle of turning during the pivoting phase.

Rt1 =

{

γ̇∆t if hr > 0.01,
0 otherwise.

After the rear wheel touches the ground, we switch to a learned
balance controller and measure how long the bicycle can stay bal-
anced: Rt2 = 1 if the bicycle remains upright. Without the second
reward function, the “optimal” policy can produce a large roll dur-
ing the pivoting phase, after which the rider cannot recover balance.
In the animation, the rider performs an endo after turning the han-
dlebar sharply to the left. As a result, the rider and the bike pivot
around the front wheel and the 180-degree turn finishes within three
seconds.

Back hop. The back hop is another way to balance on the rear
wheel. This feedback balance strategy uses small hops to change
the relative position between the contact and the COM. In the an-
imation, the rider and the bike start at an initial pose in which the
COM is behind the contact point between the rear wheel and the
ground. The bike will fall backwards if the rider does not correct
for this. He bends his knees and then extends them to bring the
rear wheel off the ground. He quickly pulls the handlebar towards
himself in mid-air to adjust the pitch of the bicycle. When the rear
wheel lands, the COM comes closer to the ground contact position.
As a result, the rider can continue to hop and balance for a long
time.

Bunny hop. Figure 9 shows the rider performing a bunny hop on
a BMX bike. A bunny hop is a stunt where the rider jumps with the
bike over an obstacle or a trench. The task-specific reward function
for the feed-forward controller is evaluated based on the height of
both tires above the ground Rt = hfhr . Right before the hop, the
rider first leans forward and then moves his pelvis rapidly towards
the back of the bicycle. This vigorous motion tilts the bicycle up-
ward. The rider then jumps with the bicycle over a clown lying on
the ground. We were pleased to see that the optimal policy for the
bunny hop motion includes a phase that tilts the bicycle up, which
is essential to jumping for a greater height and distance. This style
is known as the “American bunny hop”.

Riding a high wheeler. The peculiar design of a high wheeler
makes “headers” a significant hazard, in which the rider gets pitch
forward off the bicycle. We took on the challenge and designed a
stunt that we had never seen performed on a high wheeler (Fig-
ure 10). During the stunt, the rider intentionally stops the bike

to initiate a forward rotation. He then carefully changes pedaling
speed to avoid taking a header and successfully rides backward on
a single wheel. The rider can balance for a few seconds even with-
out a lateral balance controller, probably due to the prominent gy-
roscopic effect from the large rotating front wheel. When the rider
starts to lose balance, he accelerates to return to the normal riding
mode, in which we used the same balance and steering controller
as in the road bike examples.

Riding a unicycle. The unicycle and the bicycle have many simi-
larities. We have found that our algorithm is general enough to han-
dle balance on a unicycle. Similar to some bicycle stunts, the longi-
tudinal balance on a unicycle can be maintained via speeding-up or
slowing-down, while the lateral balance can be maintained through
steering toward falling. Unfortunately, unicycles do not have han-
dlebars to steer. To steer the unicycle to the left, the rider needs to
twist his upper body to the right. The unicycle will counter-rotate
to the left due to the conservation of angular momentum. Figure 11
shows a clown riding a unicycle. To start riding, the clown first
pedals backward, which leans the unicycle to the front. He then ac-
celerates until the actual speed matches the user-specified desired
speed. During riding, the clown repeatedly twists his waist to keep
the lateral balance, which causes the unicycle to travel in a slightly
sinusoidal path.

7 Discussion and Limitations

We have demonstrated that searching for both the parametrization
and the parameters of a policy creates robust controllers for a wide
variety of bicycle balance tasks. Since many previous studies fo-
cused on optimizing the parameters alone, we evaluated the neces-
sity of optimizing the parametrization. Figure 12 Left and Right
compares two policy search results with a fixed and with an evolv-
ing parametrization for the balance task of an endo. Both searches
started with the same parametrization: a neural network with direct
connections between the input and the output layers. We used CMA
to search for only the weights while we used NEAT to evolve both
the weights and the network structure. Both algorithms were run
for 50 iterations with 90 samples per iteration. We ran each search
ten times with different random seeds to reduce the stochastic bias.
Figure 12 Left plots the curves of the policy value versus the num-
ber of iterations in the CMA search. Note that none of the searches
reached a value of 3000. In comparison, eight out of ten NEAT
searches found policies scored higher than 3000 (Figure 12 Right).
Three of them reached almost 7000. The average final policy value
of NEAT was almost twice its CMA counterpart. A similar com-



Figure 12: A comparison between policy searches with a fixed and an evolving parametrization. Left: The policy value vs. the number of
iterations for ten policy searches on a fixed parametrization using CMA. Middle: Results of ten policy searches on a fixed parametrization
using neuroevolution without augmenting topology. Right: Results of ten policy searches on an evolving parametrization using NEAT.

parison was conducted between neuroevolution with and without
augmenting topology, and this told the same story (Figure 12 Mid-
dle vs. Right). Even though we only reported the detailed com-
parison for this particular example, we observed the same trend for
other bicycle stunts: policy search with an evolving parametrization
significantly outperforms search with a fixed parametrization.

As illustrated in Section 6, many bicycle stunts need balance in
both the longitudinal and lateral directions. In our implementation,
we decoupled the balance task in these two directions and learned
the task in two steps. In the first step, we focused on longitudinal
balance and chose only the relevant states and actions. We artifi-
cially increased the width of the tire to 20cm so that the controller
did not need to be concerned about the loss of balance in the lat-
eral direction. This is analogous to using training wheels in real
life. Once the longitudinal controller had been learned, we fixed
that part of the neural network, reduced the width of the tire back to
normal3 and then performed the second step of training for lateral
balance. Although in theory, optimizing a controller for the longi-
tudinal and the lateral balance simultaneously would have a better
global optimum, in practice, searching for a policy in a higher di-
mensional space is subject to local minima and thus could produce
inferior results. In all our examples, this two-step training found
better policies than training both longitudinal and lateral balance
simultaneously.

Our attempts at learning bicycle stunts using other reinforcement
learning algorithms ended up unsuccessful, but these valuable ex-
periences led us to our current solution. Our first attempt was to
use standard value iteration method with a discretized state space.
The high dimensional state space made the tabular representation
infeasible. We encountered the convergence issue when the state
space was parameterized by polynomial and Gaussian kernel bases.
We also experimented with a few model-free learning algorithms.
For example, SARSA(λ) demonstrated some potential (i.e. the nor-
mal cycling was successful), but the computation time was too long
even for the simplest task. Although our final decision was to use
policy search, the initial experiments were unsuccessful due to an
overly simplified policy parametrization: a neural network with-
out hidden layers. Using quadratic features to enrich the inputs of
the network, we had some limited success with the optimal solu-
tions solved by CMA. However, without a systematic way to per-
form feature selection, the likelihood of finding a successful local
minimum is low due to the large number of quadratic features. Fi-
nally, we chose NEAT, a bottom-up approach that complexifies the
parametrization from the simple network. This method consistently
found policies that worked for all our examples.

NEAT provides an effective way to search for both the parametriza-
tion and the parameters, which frees us from laborious and unin-

3The tire width of the road bike and the high wheeler is 1.5cm while the
tire width of the BMX bike and the unicycle is 3cm.

tuitive manual tuning of the network structure. However, to for-
mulate an MDP, we still need to design the state space, the action
space and the reward function. While designing the state space is
often straightforward, choosing appropriate actions for a specific
task requires domain knowledge. For example, knowing how to
steer a unicycle is essential for the unicycle balance task. Like-
wise, designing a good reward function requires some trial-and-
error experiments. Our reward functions initially contained only
the task-specific terms. We found that the algorithm often discov-
ered a policy that had a high value but resulted in undesired mo-
tions: The rider performed redundant movements as long as this
did not affect the balance. We eliminated these undesired motions
by adding regularization terms to the reward function. However,
selecting states, actions and reward functions is unavoidable when
formulating and solving MDPs. Inverse reinforcement learning [Ng
and Russell 2000] might be a promising approach, but this requires
data generated from the optimal policy, such as motion capture data
from real stunt bikers. Compared to manually designing a policy
parametrization, learning the domain knowledge and tuning the re-
ward function is more intuitive and fun.

Although the learning algorithms presented in this paper are gen-
eral, the qualities of simulated motions vary with different tasks.
We notice that some of the stunt motions do not look as compli-
ant as those performed by real human riders due to three possible
reasons. First, we chose large torque limits to allow robust control
for various challenging maneuvers (Table 4). We used the same
torque limits both in offline learning and online simulation to gen-
erate the results shown in the accompanying videos. To investigate
whether we can achieve more compliant motions, we reduce the
joint torque limits for simulation until the rider can no longer main-
tain balance (shown as the values in the parenthesis in Table 4).
Although our controllers are robust when executed with smaller
amount of torques, the resulting motions appear very similar. The
second possible reason is that we did not minimize rider’s effort
during offline learning. We found that it is difficult to weigh the
effort minimization term because it competes with the task-specific
objective. One possible solution is to implement prioritized opti-
mization [de Lasa and Hertzmann 2009] to incorporate the effort
minimization objectives. The last reason is probably due to the use
of actuator constraints in ODE. The actuator constraints usually re-
sult in more stable simulation. However, since the joint torques are
solved together with all other constraint forces, this allows the char-
acter to react instantaneously. We believe that the lack of reaction
latency contributes to the stiffness of the motion. Using traditional
PD servos could mitigate this problem but could also significantly
increase the time of learning and simulation.

We further examine the torque trajectories (Figure 13), and observe
that the controllers learned different strategies to achieve different
tasks. In the endo example, the torques switch abruptly between
the two extreme values. It is similar to the “bang-bang control” that



Task Wrist Elbow Scapula Shoulder Pelvis Hip Knee Ankle Ratio
balance and
steering (flat)

50 (5) 150 (20) 200 (30) 550 (40) 2000 (100) 500 (150) 500 (50) 500 (50) 0.9

unicycle 10 (1) 100 (5) 100 (20) 150 (10) 2000 (30) 100 (95) 100 (90) 60 (20) 0.89
wheelie 10 (10) 100 (30) 100 (50) 150 (80) 2000 (100) 500 (150) 100 (100) 60 (60) 0.81
going over
curbs

50 (30) 150 (50) 200 (50) 550 (150) 2000 (300) 500 (250) 500 (200) 500 (50) 0.76

high wheeler 50 (10) 150 (50) 200 (20) 550 (200) 2000 (300) 500 (440) 500 (360) 500 (230) 0.64
balance and
steering (bumpy)

50 (50) 150 (100) 200 (100) 550 (350) 2000 (400) 500 (300) 500 (350) 500 (200) 0.58

front wheel
pivot

250 (50) 500 (150) 500 (150) 550 (400) 2000 (600) 500 (500) 500 (280) 500 (80) 0.58

staircase 50 (40) 150 (100) 200 (90) 550 (350) 2000 (400) 500 (450) 500 (450) 500 (80) 0.56
bunny hop 20 (15) 50 (50) 500 (150) 550 (150) 2000 (750) 500 (400) 500 (380) 500 (220) 0.54
endo 50 (50) 100 (100) 100 (100) 550 (400) 2000 (600) 500 (470) 500 (485) 500 (150) 0.45
back hop 250 (90) 500 (400) 500 (500) 550 (545) 2000 (900) 500 (500) 500 (450) 500 (140) 0.33

Table 4: Torque limits (Unit: Nm) for different tasks. The values without the parenthesis are used for learning. The values within the
parenthesis are the lowest torque limits that can be used in the simulation before the motion starts to fail. The amount of reduction is a
measure of the robustness of the learned controllers. More reduction means a more robust controller. The last column reports the reduction
ratios (sorted in a decreasing order) of average torque limits. This ranking is a possible indication of the difficulties (from low to high) that
the learning algorithm think for each task.

frequently arises in time-critical tasks, indicating that the task of
endo might also be time-critical. In contrast, the torque trajectory
of riding a bicycle on a flat terrain shows more smooth transitions,
which implies that normal biking does not require instant reactions
and is thus an easier task.

Our system has a few limitations. We used ball joints to attach the
feet to the pedals. These bilateral joint constraints simplify the sim-
ulation but render some motions less realistic: The brief moment in
our bunny hop animation when the rear wheel pops off the ground
just before the hop typically is not seen in the real stunt. Faithfully
modeling the contact between the feet and the pedals could solve
this problem. However, this will make the simulation more expen-
sive and the learning more difficult. In the learning, we separated
the feed-forward and feedback controllers. This treatment works
well if the feed-forward controller is applied for a short period and
then we switch to the feedback controller. However, in a real-life
performance, stunt bikers exhibit both feed-forward and feedback

Figure 13: Torque trajectories over time for performing an endo
(top) and riding a bicycle on the flat ground (bottom).

controls at the same time, which allows them to perform longer and
more difficult stunts. This might be one of the reasons that our algo-
rithm cannot generate a 360-degree front wheel pivot. Our interac-
tive simulation does not allow the user to arbitrarily concatenate the
stunts. Successful stunts demand a stable initial pose, appropriate
speed and sometimes a favorable terrain. All these requirements to-
gether prevents us from concatenating stunt controllers arbitrarily.
Learning additional intermediate controllers between stunts might
be a possible solution.

8 Conclusion

We have presented an algorithm for animating bicycle stunts. Key
aspects of our approach include a fast and stable physical simula-
tion, policy search for POMDP, and the use of a sample-based opti-
mization solver that searches for both the structure and the weights
of a neural network. Our system allows us to control a human char-
acter that performs a variety of bicycle stunts, including wheelie,
endo, bunny hop, front wheel pivot and back hop. Our characters
can learn to master the most demanding balance tasks in minutes,
which challenges most people and takes months of practice to learn.

Policy search is a powerful method for learning optimal controllers.
However, manually designing parametrization of the policies can be
challenging for difficult tasks. Combining policy search with NEAT
makes it easy to use and unleashes its full power. We believe that
its success will not be limited to the bicycle control tasks. It has
the potential to solve other challenging control problems, such as
gymnastics, skateboarding, surfing and dancing.

There are a number of interesting avenues for future work. Deep
learning [Hinton 2007] and deeper neural networks could be ex-
plored for even more difficult stunts. Our work has concentrated
on controllers for individual stunts. It would be interesting to in-
vestigate a sequence of stunts that traverse a bicycle course with
obstacles. Finally, it would be fascinating to manufacture a mini
bicycle and a robotic rider and apply our controllers to make them
perform stunts in the real world.
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