
Learning Bicycle Stunts:

Supplementary Document

Jie Tan Yuting Gu C. Karen Liu Greg Turk

Georgia Institute of Technology

Figure 1: Balance-driven tasks and the neural network structures of their corresponding controllers: (a) balance and steering, (b) wheelie,
(c) back hop, (d) riding a high wheeler (stunt) and (e) riding a unicycle. Red edges have positive weights and blue edges have negative
weights. The thickness of the edges shows the relative magnitudes of the weights.

1 Neural Network Structures

We used NEAT to search for both the topologies and the weights
of neural networks for balance-driven tasks. In addition to the endo
balance controller, which is shown in the paper, we illustrate other
learned neural networks in Figure 1. Recall that NEAT begins each
controller with direct connections between input and output neu-
rons. Note that NEAT performs feature selection (removing con-
nections) for the controllers of balance and steering and back hop.
It also performs structural complexification (adding nodes and con-
nections) in the examples of the wheelie and riding a unicycle. We
find that it is difficult to interpret these network structures, and this
is a common problem of using neural networks.

2 Reward Functions

We summarize the reward functions that are used to learn different
bicycle tasks in Table 1. We accumulate the rewards for 1000 time
steps or until the bicycle loses its balance |α| > 0.5 or when the
stunt fails |∆β| > 0.5.

3 Bicycle Specifications

We describe the physical specifications of the three bicycles and the
unicycle in Table 2.

4 Simulation and Optimization Parameters

We used Open Dynamic Engine as our physical simulator. Table 3
summarizes the simulation parameters used in our examples.

We applied CMA to search for the splines for the momentum-driven
tasks. We used 90 samples per iteration, a maximum of 50 iterations
and the default values for other parameters [Hansen 2006].

Task Reward Function

momentum-driven

going over curbs β
endo (lifting) −β

front wheel pivot







500γ̇∆t if the pivoting phase has started,
1 if the pivoting phase has ended,
0 otherwise.

bunny hop hfhr
balance-driven

balance and steering 1 + 1

∆θ+1

wheelie 1 + 1

∆β+1
+ 1

ψ+0.1
+ 2

α+0.1

endo (balance) 1 + 1

∆β+1
+ 1

∆vf+0.1
+ 1

α+1
+ 1

θ+1

back hop 1 + 1

y+0.1
+ 1

z+0.1
+ 1

x+0.1

high wheeler (stunt) 1 + 1

∆β+1
+ 1

∆vf+1

unicycle 1 + 1

∆vr+1
+ 2

α+1
+ 1

χ+1

Table 1: Reward functions for different tasks.

Specification Road BMX High Uni-
Bike Bike Wheeler cycle

mass of the frame 7.0 5.6 8.0 2.0
mass of the handlebar 3.5 3.5 4.0 NA
mass of the front wheel 1.7 0.71 5.0 NA
mass of the rear wheel 1.7 0.71 0.5 2.3
radius of the front wheel 0.32 0.25 0.45 NA
radius of the rear wheel 0.32 0.25 0.11 0.32
width of the tires 0.015 0.03 0.015 0.03
distance between wheels 1.03 0.85 0.58 NA

Table 2: Specifications of different bicycles and the unicycle. The
mass unit is kg and the length unit is m. The distance between
wheels only accounts for the horizontal distance.

Parameter Value

time step 0.01s

constraint force mixing (CFM) 10−10

error reduction parameter (ERP) 0.99
friction coefficient (BMX bike examples) 2.0
friction coefficient (other examples) 1.0

Table 3: Simulation parameters.

Parameter Value

max number of iterations 50
population size 90
survival rate 0.2
crossover rate 0.7
mutation rate 0.2
chance of adding a link 0.05
chance of adding a node 0.05
chance of replacing a weight 0.1
max weight perturbation 0.5

Table 4: NEAT parameters.

We applied NEAT to search for the neural networks for the balance-
driven tasks. The implementation can be found at Stanley [2002].
Table 4 summarizes the parameters used in our NEAT optimization.

5 Constraints in ODE

We are going to describe how various constraints are formulated in
ODE for completeness of presentation.

Joint constraints Joints that connect two rigid bodies constrain
their relative motions. The hinge, universal and ball joints impose
five, four and three constraints respectively, each of which is a linear
equality constraint.

JA

[

vA

ωA

]

− JB

[

vB

ωB

]

= 0 (1)

where JA is a row in the Jacobian matrix that maps the velocities of
body A to one component of the linear velocity at the joint position
or the angular velocity perpendicular to the joint axes.

Actuator constraints An actuator is attached to each joint of the
human character to enable it to actively control its joint motion. The
actuators generate internal torques to track the desired pose given
by the IK solver (See Figure 2 in the paper). The following linear
equality constraint should be satisfied for each actuated degree of
freedom (DOF).

n
T (ωA − ωB)− ˜̇q = 0 (2)

where n is the axis of the actuated DOF. ˜̇q is the desired actuator an-
gular speed, which is the difference between the desired and current
DOF value, divided by the time step.

Contact constraints ODE uses the standard friction pyramid to
model the contact forces between the bicycle and the ground. Let
f⊥, f1

‖ and f2
‖ be the normal and two tangential components of the

contact force fc.

fc = f⊥n+ f
1
‖ t1 + f

2
‖ t2

where n is the ground normal, t1 and t2 are the two orthogonal
tangential bases of the ground.

Along the normal direction, the contact velocity and contact force
satisfy the following linear complementarity constraints.

v⊥ ≥ 0, f⊥ ≥ 0, v⊥f⊥ = 0 (3)

The normal contact velocity v⊥ can be calculated by multiplying
the Jacobian at the contact location with the body velocities and
then projected along the normal direction.

v⊥ = n
T
J

[

v

ω

]

(4)

Along the tangential direction, one of the following friction cone
conditions must be satisfied.

vi‖ > 0, f i‖ = −µf⊥
vi‖ < 0, f i‖ = µf⊥
vi‖ = 0, −µf⊥ ≤ f i‖ ≤ µf⊥

(5)

where i ∈ {1, 2} and µ is the friction coefficient. The tangential

velocities vi‖ can be calculated similar to eq. (4).

The dynamics equation, together with all the constraints (1), (2), (3)
and (5), form a mixed linear complementarity program, which can
be efficiently solved using a variant of Dantzig’s algorithm [Smith
2008].

References

HANSEN, N., 2006. Covariance matrix adaptation: source code.
https://www.lri.fr/˜hansen/cmaes inmatlab.html.

SMITH, R., 2008. Open dynamics engine. http://www.ode.org/.

STANLEY, K., 2002. Neuroevolution of augmenting topology:
source code. http://www.cs.ucf.edu/˜kstanley/neat.html.

