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Abstract

We present a general approach to creating realistic swimming be-
havior for a given articulated creature body. The two main com-
ponents of our method are creature/fluid simulation and the opti-
mization of the creature motion parameters. We simulate two-way
coupling between the fluid and the articulated body by solving a lin-
ear system that matches acceleration at fluid/solid boundaries and
that also enforces fluid incompressibility. The swimming motion of
a given creature is described as a set of periodic functions, one for
each joint degree of freedom. We optimize over the space of these
functions in order to find a motion that causes the creature to swim
straight and stay within a given energy budget. Our creatures can
perform path following by first training appropriate turning maneu-
vers through offline optimization and then selecting between these
motions to track the given path. We present results for a clownfish,
an eel, a sea turtle, a manta ray and a frog, and in each case the re-
sulting motion is a good match to the real-world animals. We also
demonstrate a plausible swimming gait for a fictional creature that
has no real-world counterpart.
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Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation.

Keywords: Swimming, articulated figures, fluid simulation, opti-
mization

Links: DL PDF WEB VIDEO

1 Introduction

The oceans, lakes and rivers of our planet contain a wide variety
of creatures that use swimming as their primary form of locomo-
tion. There are an astonishing variety of body shapes and patterns
of motion that are used by swimmers across the animal kingdom.
Some of the many creature swimming patterns from nature include
using thrust from a tail, moving an elongated body sinusoidally, us-
ing paddle-like motions of flippers, kicking with legs, and gentle
bird-like flapping of fins. Our research goal is to develop a gen-
eral platform for finding efficient swimming motion for a given
creature body shape. There are a number of application areas
that can benefit from realistic swimming simulation, including fea-
ture film animation [Stanton and Unkrich 2003], biological inves-
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Figure 1: Aquatic creatures with different shapes swim in a sim-
ulated fluid environment. The particle traces show the fluid flow
near the swimmers. Our method provides a generic framework to
discover natural swimming gaits and to simulate the swimming mo-
tion for a wide variety of animal bodies.

tigation of swimming mechanics [Kern and Koumoutsakos 2006;
Shirgaonkar et al. 2008], locomotion of user-created creatures in
video games [Hecker et al. 2008], and the invention of new modes
of propulsion for underwater vehicles [Barrett et al. 2002].

Today, most scientific models for swimming motion are cus-
tomized to specific species with predefined locomotion patterns
[Shirgaonkar et al. 2008]. These models are highly accurate but
are difficult to generalize to a variety of creatures. The existing
3D swimming animations, on the other hand, demonstrate a life-
like underwater ecosystem with rich variety of creatures. However,
their motions are typically animated manually or based on simpli-
fied physical models. Having a generic set of tools that can produce
physically realistic aquatic motion for a wide array of creatures is
challenging and has not been shown in previous work.

At the heart of synthesizing realistic aquatic locomotion lies the
problems of simulation and control. Solving these two problems
simultaneously under hydrodynamics presents some unique chal-
lenges. First, the relation between the movement of the aquatic an-
imal and the forces exerted by surrounding fluid is extremely com-
plex. Thus it is difficult to solve using an optimization approach.
Any small changes in undulation or flapping gait can result in dras-
tically different control strategies. In addition, the morphology of
aquatic animals is astonishingly diverse and results in fundamen-
tally different locomotion mechanisms. Designing control strate-
gies based on ad-hoc observation or careful tuning of parameters
would be extraordinarily difficult to generalize to the vast biodiver-
sity found in nature.

This paper describes a complete system for controlling a wide va-
riety of aquatic animals in a simulated fluid environment. Our goal
is a system that balances between physical realism and generality.
Given an aquatic animal that is represented by an articulated rigid
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body system, our system can automatically find the optimal loco-
motion in a hydrodynamically-coupled environment. Our system
does not require any prior knowledge of the animal’s behavior and
minimizes the effort of manually tuning the physical and control
parameters.

The system consists of two main components: simulating motion
and optimizing control strategies. We simulate articulated rigid
bodies submerged in invisid, incompressible fluid governed by the
Navier-Stokes equations. The animal can exert torques to exer-
cise each actuated joint. Through accurate two-way coupling of
the rigid bodies and the fluid, the joint motion will lead to some
locomotion in the fluid, but purposeful and balanced locomotion
requires careful coordination and synchronization among those ac-
tuated joints. The second component provides an automatic way
to discover joint motion that achieves a desired goal in locomotion
(i.e. a joint motion that yields the fastest or the most energy efficient
locomotion). We employ an optimization technique called Covari-
ance Matrix Adaptation (CMA) to explore the domain of possible
joint trajectories.

We evaluate our system by demonstrating optimized swimming
gaits for a wider variety of aquatic animals and swimming strate-
gies, including clownfish, eels, sea turtles, frogs, manta rays and
some imaginary creatures. In addition, we compare the swimming
motion in a Navier-Stokes fluid with motion in a simplified fluid.
Our results show that these motions can differ dramatically depend-
ing on which fluid model is used.

2 Related Work

Prior research that has the most influence on our work include tech-
niques from articulated figure control, approaches to solid-fluid
coupling, and simulated creature locomotion. We will review the
work in each of these sub-areas in turn.

2.1 Articulated Figure Control

Controlling a physically simulated articulated figure has been ex-
tensively studied in both computer animation and robotics. Hod-
gins et al. [1995] demonstrated that sophisticated biped con-
trollers, such as gymnastic vaulting or tumbling, can be con-
structed based upon simple proportional-derivative (PD) con-
trollers that track individual joints. This control framework
has then been widely applied to physically simulate different
types of human activities [Laszlo et al. 1996; Faloutsos et al. 2001;
Zordan and Hodgins 2002; Yin et al. 2007; Sok et al. 2007]. As
controllers become more complex, the domain of control param-
eters expands and tuning the parameters becomes less intuitive.
Many researchers exploited optimization techniques or optimal
control theory to improve the robustness of the controllers, as well
as the quality of motions they produce. For example, the gains
of feedback controllers can be optimized based on the dynamic
state of balance in the reference trajectory [da Silva et al. 2008;
Muico et al. 2009; Ye and Liu 2010]. Continuation methods can
be used to design challenging controllers in an adaptive fash-
ion [Yin et al. 2008]. Stochastic optimization algorithms, such
as Covariance Matrix Adaptation (CMA) [Hansen and Kern 2004],
have also been applied to search control parameters when the
problem domain is highly discontinuous [Wu and Popović 2010;
Wang et al. 2010; Mordatch et al. 2010]. Our method was inspired
primarily by the success of applying CMA to optimal control prob-
lems demonstrated in the previous work. However, our work faces
unique challenges because the controller is operated in a complex
hydrodynamic environment with two-way coupling between the an-
imal and the fluid.

2.2 Solid-Fluid Coupling

Many researchers have proposed various ways to simulate the two-
way coupling between fluids and solids. Takahashi et al. [2002]
presented a simple alternating two-way coupling method between
fluids and solid objects. The velocities of the solid objects served
as the boundary conditions for fluid motion while the pressure field
solved from the Navier-Stokes equations was integrated at the solid
surface to provide a net force and a net torque exerted on the solid
objects. Arash et al. [2003] represented the solids by mass-spring
models and fluids by marker particles. The interactions were cal-
culated through the mutual forces between the marker particles and
mass nodes at the interface. Carlson et al. [2004] proposed the
rigid fluid method that treated solids as fluids at first and then pro-
jected the velocity field in the solid region onto a subspace satis-
fying the rigid constraints. Guendelman et al. [2005] made use
of an alternating approach that is generalized to include octree and
thin shells. They solved the pressure field for a second time by
adding solid masses to the fluid grid density, which improves the
pressure field. Klingner et al. [2006] used a tetrahedral mesh for ac-
curate boundary discretization and extended the mass conservation
(projection) step to include the dynamics of rigid body. This was
extended to model the interaction between fluids and deformable
bodies [Chentanez et al. 2006]. Batty et al. [2007] derived a fast
variational approach that allowed sub-grid accuray using regular
grids. Robinson et al. [2008] developed a generic and momentum
conserving technique to couple fluids to rigid/deformable solids and
thin shells. The coupled system is symmetric indefinite and solved
using MINRES.

2.3 Simulated Swimmers

Although human motion has been the main focus in charac-
ter animation, a number of researchers have achieved great re-
alism in synthesizing the movement of other animals, such
as worms [Miller 1989], fish [Tu and Terzopoulos 1994], birds
[Wu and Popović 2003], dogs [Kry et al. 2009], and even imagi-
nary creatures [Wampler and Popović 2009; Hecker et al. 2008].

Tu and Terzopoulos pioneered the animation of swimming fish
using a a mass-spring system for the fish body and a simplified
fluid model [Tu and Terzopoulos 1994; Terzopoulos et al. 1994;
Grzeszczuk and Terzopoulos 1995]. They used simulated anneal-
ing and the simplex method to discover swimming gaits. Their
simulation also incorporated vision sensors, motor controllers, and
behavioral modeling of eating, escape, schooling and mating. The
major difference between their paper and ours lies in the fluid model
and the optimization technique. This early paper used a simplified
fluid model while ours adopts a full Navier-Stokes solver and intro-
duces a two-way coupling method between fluids and articulated
figures in generalized coordinate.

Sims [1994] investigated the simulated evolution of creature loco-
motion. Sims’ creatures were composed of blocks that are con-
nected by articulated joints. He used genetic programming to
evolve both the creature bodies and their controllers. In addition to
walking and jumping behaviors, some of his creatures also learned
to swim in a simplified fluid environment.

Wu and Popović [2003] used an articulated skeleton and de-
formable elements for feathers in order to animate the flight of
birds. They used an optimization process to find the best wing
beats in order to accurately follow a given path. Yang et al. [2004]
used an articulated body representation, a simplified fluid model,
and several layers of control to model human swimmers. Kwa-
tra et al. [2009] used an articulated body representation and two-
way coupling between the body and a fluid simulation to model



human swimming. They used motion capture data of swimming
motions as input to the swimmer control. Lentine et al. [2010]
used an articulated skeleton with a deformable skin layer and two-
way coupling to a fluid simulator to model figures that are moving
in fluids. They optimized for certain styles of motion using objec-
tive functions designed for effort minimization and drag minimiza-
tion/maximization. Their results also clearly demonstrated that us-
ing a full fluid simulator gives more realistic results than using a
simplified fluid model.

In the field of computational fluid dynamics (CFD), there is a
small but growing literature on the simulation of swimming crea-
tures. These studies are typically focused on a single swimming
style of one particular creature, and they usually make use of so-
phisticated fluid dynamics code, at a large cost in computational
complexity, to generate more accurate and detailed fluid simula-
tion. Often these studies are informed by laboratory studies of the
creature in question, including flow data that has been gathered
using methods such as particle image velocimetry [Grant 1997].
A good representative of such work is the investigation of Shira-
gaonkar et al. of the knifefish, which is a fish that propels itself
using waves that travel along its elongated lower fin (gymnotiform
swimming) [Shirgaonkar et al. 2008]. The simulator for this work
used an immersed boundary method, and the simulations were per-
formed on a 262 compute node Linux cluster. Another example of
such a study is the work of Kern and Koumoutakos [2006] on the
simulation of eels (anguilliform swimming). In this work, the fluid
grid is matched to the eel body by using a cylindrical grid in most
of the domain and a hemisphere-based grid for the head of the eel.
They used the CMA technique [Hansen and Kern 2004] to optimize
a five parameter motion model.

3 Coupling Articulated Figures with Fluids

We simulate fluids by solving the Navier-Stokes equations on a
MAC grid and we simulate the articulated rigid body using general-
ized coordinates. We modify the projection step of the fluid solver
to take into consideration the dynamics of the articulated figure.

3.1 Fluid Simulation

We simulate fluid using the inviscid, incompressible fluid equations
(sometimes called the Euler equations):

∇ · u = 0

ut = −(u · ∇u)−
1

ρ
∇p+ f

where u = (u, v, w) is the velocity of fluids, p is the pressure, ρ
is the density and f accounts for the external body forces. We do
not include a viscous term because such effects are negligable for
the motion of the large animals in our examples. If we were study-
ing swimming of millimeter sized creatures, however, incorporating
viscous effects would be mandatory.

The standard way to solve the above equations on a MAC grid can
be described in following two steps. First, we calculate an interme-
diate velocity field u∗ by only considering the convection u · ∇u
and the body force f :

u
∗ = SL(un

,∆t) + ∆tf (1)

where un is the velocity at nth time step. We use the Semi-
Lagrangian method [Stam 1999] to integrate the convection term
and apply BFECC [Kim et al. 2007] to reduce the numerical dissi-
pation.

Next, we solve the following Poisson equation with Neumann
boundary conditions u · n = usolid · n at the solid boundary and
Dirichlet boundary conditions p = 0 at the free surface. Then we
project the intermediate velocity field to ensure the incompressibil-
ity condition.

∇2
p =

ρ

∆t
∇ · u∗

(2)

u
n+1 = u

∗ −
∆t

ρ
∇p (3)

In this work, we modify the second step ((2) and (3)) to take into
account the interaction between the fluid and the articulated rigid
bodies.

3.2 Articulated Rigid Body Simulation

In this section, we will describe the numerical techniques that we
use to move the body parts of an articulated figure. Later, in Sec-
tion 4, we will describe the optimization technique that we use to
discover efficient swimming gaits.

The dynamic equations of an articulated rigid body in generalized
coordinates can be expressed as follows.

M(q)q̈+C(q, q̇) = τint + τext (4)

where q, q̇ and q̈ are vectors of positions, velocities and acceler-
ations of joint degrees of freedom respectively. M(q) is the mass
matrix and C(q, q̇) accounts for the Coriolis and Centrifugal force.
τint and τext are internal and external generalized forces.

Given the current state qn and q̇n, we can evaluate M and C of (4).
For the external forces τext, we consider the fluid pressure force.
We make use of the modified PD controller of Tan et al. [2011] in
order to calculate the internal force τint that closely tracks a refer-
ence trajectory. Although the details of this method can be found
in [Tan et al. 2011], we include an overview of this method below.
The reference swimming trajectory is computed by an optimization
process described in Section 4. Once we know both the external
and internal forces, we can solve the acceleration q̈n and advance
to the next time step via explicit Euler integration.

Modified Proportional-Derivative Controller In computer ani-
mation, a PD servo (5) provides a simple framework to compute
control forces for tracking a kinematic state of a joint trajectory:

τ
n = −kp(q

n − q̄
n)− kdq̇

n
(5)

where kp and kd are the gain and damping coefficient. In general,
high gain PD servos result in small simulation time steps in order
to maintain stability.

The aquatic creatures in this work require high gain PD servos to
track the desired swimming gait closely against strong fluid pres-
sure. However, we cannot reduce the time step to accommodate sta-
bility due to the time-consuming fluid simulation. To achieve these
two conflicting goals, large time steps and high gains, we modify
the PD controller as follows. Instead of using the current state qn

and q̇n to compute the control force, we compute the control forces
using the state at next time step qn+1 and q̇n+1:

τ
n = −kp(q

n+1 − q̄
n+1)− kdq̇

n+1
(6)

Equation (6) can be linearized at qn and q̇n as:

τ
n = −kp(q

n +∆tq̇
n − q̄

n+1)− kd(q̇
n +∆tq̈

n)



Figure 2: The computational steps for simultaneous coupling be-
tween fluids and articulated rigid bodies.

Applying the modified PD controller to the articulated rigid body
simulation with multiple degrees of freedom, we solve the acceler-
ation as

q̈
n = (M+Kd∆t)−1(−C−Kp(q

n+q̇
n∆t−q̄

n+1)−Kdq̇
n+τext)

where both Kp and Kd are diagonal matrices that indicate the gains
and damping coefficients.

3.3 Two-way Coupling Between Fluids and Articulated

Rigid Bodies

The two-way coupling between the incompressible fluid and the
articulated figures should satisfy following three conditions.

1. The normal velocity at the interface between the fluids and the
articulated rigid bodies should agree with each other.

2. The motion of the articulated rigid body resulting from the
fluid pressure force must be consistent with the Lagrangian
equations of motion.

3. The fluid should be incompressible.

Two-way coupling is ensured by having the fluid exerting pressure
forces on the rigid bodies, while at the same time the motion of the
rigid bodies affects the pressure distribution of the fluid.

Our simultaneous two-way coupling technique is inspired by
Klingner et al. [2006] since we both start from the acceleration
at cell faces. Their method uses a tetrahedral mesh to represent the
fluid, and their rigid bodies are in Cartesian space. Our simulator
uses a regular MAC grid and we couple this fluid with articulated
figures that are described in generalized coordinates. Similar to
Klingner et al. [2006], we split the coupling into two steps (Fig-
ure 2). In the first step, the two systems are solved independently
ignoring the pressure. The fluid solver calculates the intermedi-
ate velocity field u∗ using (1). The articulated rigid body solver
determines the acceleration q̈ without external pressure forces and
calculates the intermediate velocity q̇∗.

In the second step, we consider the motion of the two systems to-
gether so that they will satisfy all above three conditions. We first
voxelize the body segments of the articulated figure (represented
by water-tight polygon meshes) onto the MAC grid and we mark

those cells inside the body segments as SOLID. For two-way cou-
pling, we are particularly interested in the faces between a SOLID
cell and a FLUID cell (defined as coupled faces). The velocity at
a coupled face can be expressed in generalized coordinates by the
Jacobian of the articulated rigid body and the joint velocity:

u
∗
solid = Jq̇

∗

where J is the 3 × m (m is the number of degrees of freedom)
Jacobian matrix

J =





∂x
∂q1

∂x
∂q2

. . . ∂x
∂qm

∂y

∂q1

∂y

∂q2
. . . ∂y

∂qm
∂z
∂q1

∂z
∂q2

. . . ∂z
∂qm





Now consider the effect of the pressure field, which exerts forces
and applies accelerations along the face normals n. If a face is
shared by two FLUID cells, the acceleration is 1

ρ
∇p · n. If a face

is shared by a FLUID cell and a SOLID cell (a coupled face), we
need to take into account all the pressure values surrounding the
articulated rigid body. We first construct a k × n selection matrix
S to pick out of p the pressures at the coupled faces, where k is the
number of the coupled faces and n is the number of FLUID cells.
Thus the vector Sp constains all the pressure values surrounding
the articulated rigid body. Each element pi of Sp contributes a
pressure force (∆x)2pini to the articulated rigid body, which we
transform to the generalized coordinate:

τpi = J
T
i (∆x)2pini

The total generalized force exerted by the fluid pressure on the ar-
ticulated rigid body is

τp = (∆x)2ĴSp

where Ĵ = [JT
1 n1 . . . JT

k nk]. The pressure force results in
the acceleration in generalized coordinates

q̈p = M
−1

τp

We transform the acceleration back to Cartesian space, and the
magnitude of the acceleration at the coupled face is

a = n
T (Jq̈p + J̇q̇

∗
)

The second term J̇q̇
∗

comes from the fact that the Jacobian matrix
changes over time. Stacking the accelerations at the coupled faces
into a vector, we have

a = (∆x)2ĴT
M

−1
ĴSp+

˙̂
J
T

q̇
∗

(7)

where
˙̂
J = [J̇T

1 n1 . . . J̇T
k nk].

Since the velocity field should be divergence free at the beginning
of the next time step,

∇ · un+1 = ∇ · (u∗ +∆ta) = 0 (8)

the accelerations due to the pressure must satisfy the following
equation.

∇ · a = −
1

∆t
∇ · u∗

Putting everything together, we reach the final linear system:

DAp = D(−
u∗

∆t
+ b) (9)



A =

{

1

ρ
G faces shared by two FLUID cells

(∆x)2ĴTM−1ĴS coupled faces

b =

{

0 faces shared by two FLUID cells

−
˙̂
J
T

q̇∗ coupled faces

where D and G are the discretization of the divergence and gradient
operators on a MAC grid.

We construct a system of linear equations (9) for the pressure field,
which considers all of the three conditions to be satisfied by the
coupled system. The fluid and solid velocity agrees at the interface
(condition 1) because the velocity defined at the coupled faces are
shared by the fluid and the articulated body. The movement of the
articulated rigid body under the fluid pressure satisfies the equation
of motion (condition 2) because (7) is derived from the dynamics
(4). The fluid is incompressible (condition 3) because we enforce
the divergence free condition by (8). The linear system is of the
same size as the discretized Poisson equation (2) in a typical fluid
simulation. The main difference is that the rows correpsonding to
the cells adjacent to the SOLID cells have more non-zero entries.
Furthermore, it is also symmetric positive definite, which allows the
use of fast solvers such as the Preconditioned Conjugate Gradient
method. After solving the pressure field, we project the velocity
field to make it divergence free using (3) and update the articulated
rigid body by considering the pressure forces.

4 Optimizaton of Swimming Gaits

Section 3 describes the two-way interaction between fluids and an
articulated rigid body system. In particular, Section 3.2 describes
how we move the body parts using torques and how we compute the
torques for a given reference gait. In this section, we describe an
algorithm to automatically design optimal controllers for an active
articulated rigid body systems that is moving in a hydrodynamic en-
vironment. Our method generates physically realistic strokes based
on the swimming efficiency of the stroke.

4.1 Swimming Gait Representation

Given the geometric and physical properties of an articulated rigid
body system, we formulate an optimization to solve for the refer-
ence trajectory of PD controller at each actuated joint, qi. We want
to use a compact representation for the reference trajectory because
incorporating a fluid simulation into the optimization is computa-
tional intensive. Because aquatic locomotion is typically cyclic, we
parameterize the reference trajectory as periodic cycles in general-
ized coordinates.

qi(t) = Ai sin(
2πt

Ti

+ φi) + Ci

where Ai, Ti, φi and Ci are the amplitude, period, phase and offset
of a sine function. Using this parameterization, each reference tra-
jectory qi(t) is parameterized by four values. In most cases we just
optimize over two parameters, amplitude and phase, and leave the
period and offset fixed.

4.2 Objective Function

The objective function in our optimization tries to balance between
efficiency and energy expenditure of the swimming gait; the crea-
ture should move as fast as possible in the desired direction without
using too much energy. Furthermore, the creature should try to
avoid self-collisions and remain within the joint limits. In practice,
the choice of objective function can vary by creatures, fluid condi-
tions, or the user’s application. Here we choose a simple objective

function to find natural swimming motion:

E = −Edistance + w1Edeviation + w2Eenergy + w3Ecollision

(10)
where Edistance measures the change of the creature’s root position
∆p along a specified direction d from time 0 to time tf :

Edistance = d
T (∆p)

Edeviation measures the deviation from the specified direction and
the initial orientation.

Edeviation = ||∆p− d
T (∆p)d||+ ||∆α||

where ∆α stands for the change of root orientation in tf , ex-
pressed using the exponential map. Since we’re optimizing the gait
of straight swimming, we penalize any orientation changes. We
choose the weight w1 = 0.2 for all the examples.

Eenergy penalizes the energy expenditure of the swimming gait.
We calculate the work done by the actuated joints over the duration
of the swimming gait:

Eenergy =

∫ tf

0

∑

i

τiq̇idt

Instead of penalizing energy expenditure linearly, we modulate
Eenergy with a discontinuous function represented as the objec-
tive weight w2. Instead of constantly trying to avoid using any en-
ergy, this modulation allows the creature to freely consume a certain
amount of energy, while avoiding excessive use of torques.

w2 =

{

0 if Eenergy < EenergyBound

1 otherwise

where EenergyBound is a user specified parameter.

Ecollision penalizes self-intersection. We detect self-intersection
and calculate the overlapping volumes using a fast approximate
method. We first voxelize the articulated rigid body using a fine
grid (the typical grid resolution is about 1003). If a cell is inside
a body link, we increment the counter for that cell. At each time
step, we sum up all the cells with counter number larger than one
and multiply by the cell volume to approximate the overlapping
volume.

Ecollision =

∫ tf

0

Voverlapdt

where w3 is chosen to be 500 for all the examples.

4.3 Optimization

Our objective function is discontinuous and prone to local min-
ima due to sub-optimal swimming gaits, collision penalties, and the
modulation of the energy penalty term. We perform gait optimiza-
tion using Covariance Matrix Adaptation (CMA). CMA is based
on evaluating the objective function for a given population of sam-
ples over the parameter space (in our case the joint trajectories).
Some fraction of the best samples are then used to update the mean
and a covariance matrix that determines the distribution of samples
that are evaluated in the next generation. More details of the CMA
method can be found in [Hansen and Kern 2004].

For each CMA sample, if it violates the user specified joint limits
we simply discard it and select another sample. Because the joint
limit test takes very little computation time, discarding infeasible
samples at this stage is more “economical” than investing major



computation effort on them but assigning them a near-zero weight
at the end. Once a sample is accepted, we simulate the motion
by applying the sampled swimming gait and evaluate the resulting
motion using the objective function. To speed up CMA for solv-
ing such high-dimensional problems, we include two heuristics in
our implementation for some examples. First, we utilize symmetry
for some of our articulated figures: When a creature’s body shape
is symmetric, often its gait is also symmetric. In such cases, half
of the optimization variables are enough to characterize the gait of
the whole body because we mirror them to the other half of the
body. This assumption is applied to reduce the required computa-
tional time, but it is not necessary. Second, for creatures that have
more independent appendages, we separate the degrees of freedom
in groups and progressively improve the solution by optimizing
each group. For example, we assign the forelimbs and hindlimbs
of a frog into two separate groups. During the optimization, we
first search for the swimming gait for the hindlimbs while freezing
the motions of the forelimbs. We then search for the swimming gait
of the forelimbs with the optimal hindlimb motions that we already
found.

5 Path Following

In addition to forward thrust, aquatic creatures also employ very
efficient turning maneuvers, such as pitching up and down or turn-
ing left and right. The optimization technique described in Section
4 can be modified to learn various maneuvers. Once the aquatic
creature builds a repertoire of swimming maneuvers, we can com-
bine different maneuvers to achieve a high-level task such as path
following.

First, we add another term to Edistance in (10) to maximize the
turning angle towards the desired direction:

Edistance = d
T (∆p) + r

T (∆α)

where r is the desired axis of rotation. We set the desired swimming
direction d half way from the current facing direction towards the
turning direction. We also change Edeviation to penalize the unde-
sired orientation changes.

Edeviation = ||∆p− d
T (∆p)d||+ ||∆α− r

T (∆α)r||

We solve the above optimization using the CMA method in the
same way as described in Section 4.3.

Once different maneuvers have been learned, we apply a simple
heuristic to decide which maneuver to choose to follow the path.
At the beginning of each cycle of the motion, we find the nearest
point p on the path to the root of the articulated figure and transform
p and its tangential direction d to the root coordinate system. We

denote the transformed position and direction as p̂ and d̂. Without
loss of generality, let’s consider a one dimensional example. p̂z is

Figure 3: Three different situations that determine if the creature
chooses a “swim straight”, “pitch up” or “pitch down” maneuver.

Figure 4: The joint configurations of the frog, the manta ray and
the alien.

Figure 5: The voxelized representations of the turtle and the manta
ray. The input shapes of the articulated creatures are represented
by water-tight polygon meshes. We voxelize these body shapes onto
the simulation grid each time step to simulate the two-way coupling
between the fluid and the creature.

the z-component of p̂, which means the point is above or beneath

the root of the articulated figure. Similarly, d̂z indicates the path is
going upwards or downwards relative to the root orientation. We
choose the different maneuvers based on the following rules.

Maneuver =











Go Straight if (p̂z ≥ ε and d̂z ≤ −ε)

or (p̂z ≤ −ε and d̂z ≥ ε)

Pitch Up if p̂z > ε and d̂z > ε

Pitch Down if p̂z < −ε and d̂z < −ε

where ε is a small positive value to prevent the articulated fig-
ure from repeatedly choosing alternating turning maneuvers due to
small deviations from the path. The first case indicates that the near-
est point on the path is above/below the articulated figure while the
direction of the path is going downwards/upwards. In other words,
the articulated figure is swimming towards the path (Figure 3a).
We choose the action “swim straight” in this situation. On the other
hand, the second and third cases indicate the articulated figure is
swimming away from the path (Figure 3b and 3c) and we choose
“pitch up” or “pitch down” accordingly.

6 Implementation Details

We implemented our method using C++ and ran CMA on a cluster
with a maximum of 100 iterations and with a population size of 16
for 2D and 31 for 3D examples. Each CMA sample evaluates the
objective function by simulating two cycles of swimming motions.



Figure 6: A four-link clown fish swims. Carangiform swimmers like this flex the front of their body a little, with the majority of the motion
near the tail. Note that this fish sheds two separate trails of vortices.

Figure 7: A swimming seven-link eel. Anguiliform swimmers undulate their whole body as if a wave is travelling from head to tail, and shed
two separate trails of vortices from the tail.

The optimization took from several hours to two days, depending
on the model and the grid resolution. After we found the swimming
gait, we ran the swimming simulation on a 2.26GHz CPU with a
single core. All of the data for our swimming examples are sum-
marized in Table 1. In most of the cases, we use two optimization
variables, amplitude and phase, for each degree of freedom. We set
the period to one second and the offset to zero. When training the
turning gaits, we included the offset in the optimization variables.
For the accordian example, the degrees of freedom are interdepen-
dent and there is no phase shift among the different degrees of free-
dom. Thus one optimization variable is enough to characterize its
motion. We also exploited the strong symmetry in geometry for
some creatures, such as turtles and frogs, to halve the optimization
dimensions. We illustrate the joint configurations for some crea-
tures in Figure 4 and the voxelized representations of creatures in
Figure 5.

In our implementation, we made three simplifications to reduce the
simulation cost. 1) Instead of using a large computational domain
to cover the whole space that the creature might swim to, we use a
smaller domain that is about two to four times larger in each dimen-
sion than the creature’s bounding box. This domain moves with the
creature when the creature approaches a boundary. 2) At the bound-
ary of the computional domain, we impose the Dirichlet boundary
condition p = 0 so that the fluid outside the domain is free to flow

Figure 8: A five-link eel swims in a 2D fluid environment. In con-
trast to the simulation in 3D, an eel swimming in 2D fluid sheds only
one single vortex street. Red traces show the counter-clockwise vor-
tices while blue traces show the clockwise vortices.

Examples Num Opt Sim Sim
DOFs Dims Res Time

accordian 10 1 120× 80 1.37s
eel(2D) 4 8 128× 64 0.64s

turtle(2D) 4 4 64× 64 0.34s
fish 3 6 64× 32× 32 1.45s

eel(3D) 6 12 64× 32× 32 1.31s
manta-ray 14 21 64× 32× 32 10.92s
turtle(3D) 10 10 64× 32× 32 11.29s

frog 18 18 96× 64× 48 12.79s
alien 16 24 96× 36× 24 10.75s

Table 1: Parameters and performance of examples. Num DOFs
is the number of degrees of freedom for the articulated rigid body.
Opt Dims is the number of optimization variables. Sim Res is the
grid resolution for the simulation and Sim Time is the average sim-
ulation time per frame.

in and vice versa. 3) Since the density of most aquatic creatures
is similar to that of the fluid, we ignore the force of gravity in our
simulator.

7 Results

In this section we describe the results of our swimming optimiza-
tion method. Please see the accompanying video to observe the
swimming animations. To visualize the fluid flow, we draw parti-
cles traces, which show the trajectory of massless particles inside
the fluid in a short period of time (15 frames). We modulate the
transparency of the particle traces in 3D examples according to the
magnitude of the vorticity in order to focus attention on the visu-
ally interesting regions of the flow. In 2D examples, we colored the
traces to indicate the directions of the vortices.

There are many body shapes and styles of locomotion for fish, and
our first set of results investigates several of these. Figure 6 shows
a four-segment model of a fish, modelled after the body shape of
the clownfish. We used CMA to optimize for efficient forward mo-
tion, and snapshots of the resulting motion are given in the figure.
Note that the forward body flexes just a little, with the majority of
the motion near the tail, which is in good agreement for the style
of motion known as the carangiform mode [Lindsey 1978]. Using



Figure 9: A manta ray swimming forward. Rajiform swimmers swim by slow flapping strokes like a slow-motion version of a bird flapping
its wings.

Figure 11: A turtle swims in water with a flapping motion of its two front flippers.

the same objective function, we optimized a seven-segment figure
that was designed to mimic an eel body. Figure 7 shows that the
resulting motion is that of a travelling wave along the body of the
creature, as is typical of real eel swimming (anguiliform mode).
Note that the wake of our eel has two separate trails of vortices that
are shed from the tip of the tail, as has been observed in lab studies
of eels [Tytell and Lauder 2004]. We show in Figure 8 that a differ-
ent wake structure appears when an eel swims in a 2D fluid envi-
ronment, that of a single vortex street. The difference of the wake
structure between the 2D and 3D simulations agrees with Kern and
Koumoutsakos’s study of eels [Kern and Koumoutsakos 2006].

Our final example of fish motion is that of a manta ray. The manta
has a body that is thin in the vertical direction and that has large
pectoral fins that extend in the horizontal direction. It swims by
slow flapping strokes of these wing-like pectoral fins (the rajiform
swimming mode), somewhat like a slow-motion version of a bird
flapping its wings. Although the manta ray does not seem to be a
good candidate to be modelled as an articulated figure, we wanted
to see how far the articulated models could be pushed. We modelled
the ray’s pectoral fins as four rows of thin plates that are connected

Figure 10: A manta ray follows an S-shaped path by choosing ma-
neuvers from “swimming straight”, “pitch up” and “pitch down”.
The red curve is the path specified by the user.

to one another near the leading edge of the fin. The resulting swim-
ming motion from the optimization procedure exceeded our expec-
tations, producing the same graceful flapping that these creatures
use to swim (see Figure 9).

We tested our path following approach using the manta ray model.
We used our optimization method to find efficient swimming for
forward motion, an upward turn and a downward turn. We then
gave the manta ray a vertical S-shaped path to follow using our path
following controller. The simulated ray was able to follow the path
quite closely, as the composite image in Figure 10 shows. Note that
this path following motion was created with a single simulation,
based on gait switching between the three learned basic motions.
We also tested the path following algorithm using a simple 2D turtle
model. We show that the turtle cannot swim straight without using
the path following technique due to the accumulation of numerical
errors. When the path following technique is applied, the turtle
actively adjusts its swimming motions according to its position and
orientation and successfully swims straight.

Figure 11 shows the motion of a sea turtle that was created using
optimization. Adult sea turtles are underwater fliers, moving them-
selves forward with a flapping motion of their two front flippers
that is called a powerstroke [Wyneken 1997]. Note that our turtle
results show the characteristic rotating of the front flippers during
the upward stroke. Figure 12 shows the results of our swimmer
optimization for a model frog. As with real frogs, the large rear
legs provide the forward thrust using a classic frog kick. Note that
the frog uses its forelimbs with a small range of motion. We think
this is because the contribution from the arms is small relative to
the contribution from the legs. Based on our observation, some real
frogs do not use their forelimbs much when swimming.

In the accompanying video, we also demonstrates that articulated
figures can differ dramatically in their swimming motion depending
on whether the simulated fluid is a simple model or a full Navier-
Stokes (NS) solver. Our simple fluid simulator calculates the force
as the square of the normal component of the velocity of a mov-
ing surface element. This simplified fluid model is identical to
that in [Wu and Popović 2003; Lentine et al. 2010]. We show that
swimming in different fluid models leads to different locomotions.
Figure 14 shows a 2D swimmer that compresses and relaxes its
body in an accordian-like manner moves through the water in the
NS fluid but stay in one place in the simple fluid. We demonstrate
that the gaits trained in different fluid models differ considerably.
The swimming gait for a fish trained in NS fluid smoothly flaps its



Figure 12: A frog mainly relies on its large rear legs to provide forward thrust in the water.

Figure 13: An alien aquatic creature that swims in water by undulating its tails and flapping its wings. Note the two pairs of wings are
slightly out of phase to mimic flapping motion of larger wings.

tail to propel itself forward. When this same fish model is opti-
mized using the simple fluid, the resulting motion is considerably
different, gaining thrust mainly from bending at a sharp angle at the
middle joint of the body. These differences in motion between a
simple fluid and the NS fluid are in agreement with the findings of
Lentine et al. [2010].

In order to test the generality of our method, we applied our swim-
ming optimization to an articulated figure that has no counterpart in
the real world (see Figure 13). This is the swimming version of the
task of finding plausible walking motions for a user-created land
creature [Hecker et al. 2008; Wampler and Popović 2009]. Our
alien creature has two pairs of limbs on the trunk of its body, and in
addition has a long and powerful tail. The motion that was found by
our optimization combines a whip-like motion of the tail together
with coordinated rowing from the pairs of limbs. Although there is
no point of comparison in the real world for this creature’s motion,
the resulting swimming pattern looks entirely plausible.

Although our method requires little prior knowledge about the
swimming gait of the creature, there are some parameters that users
can change, including the energy bound, the period of the motion
for each degree of freedom, and joint limits. This provides users
the freedom to achieve different motion, agile or slow, by changing

Figure 14: An imaginary creature swims forward by compressing
and relaxing its body in an accordion-like manner in a Navier-
Stokes fluid model. The images are two snapshots in the anima-
tion sequence. This demonstrates that including the Navier-Stokes
fluid model is necessary to capture certain swimming patterns, such
as jet propulsion, because a simplified fluid model does not allow
forward motion for such modes of locomotion.

these parameters. In particular, we tuned the period of the swim-
ming gait and the energy bound in our examples. We used a period
of one second for all of the examples. We made this choice deliber-
ately because choosing a longer period means longer optimization
time (each CMA sample needs to simulate two cycles of swim-
ming motions). However, we believe that including the period into
the optimization will probably give more interesting results because
different periods could make a big difference in the final swimming
gait. We leave this as future work. To set the energy bounds, we
began by trying out several energy bounds for an initial animal, the
fish shown in the upper left of Figure 1. Once we were satisfied
with the results, we then used this as our standard energy bound.
For a new creature, we scaled this standard energy bound accord-
ing to the mass of the new creature relative to the mass of the fish.
Users can also change the weights in the objective function. In our
examples, we set all these parameters by intuition without much
tuning. The weights are reported at the end of each paragraph that
introduces the different objectives in Section 4.2.

8 Limitations

Although we have successfully applied our method to various
aquatic creatures with disparate body shapes and joint configura-
tions, our approach does have limitations.

Our two-way coupling method needs to voxelize the articulated
rigid body, and the accuracy for representing the articulated fig-
ure depends on the grid resolution. Thin features cannot be
captured by the fluid simulator (Figure 5). We believe that in-
corporating adaptive grids [Losasso et al. 2004] or unstructured
meshes [Brochu et al. 2010; Klingner et al. 2006] can dramatically
increase the accuracy of the two-way coupling. Furthermore, the
two-way coupling method is tailored for the interaction between
fluids and articulated figures. Even though many aquatic creatures
have a skeleton and can be represented well by articulated figures,
there are exceptions such as jellyfish. Our framework for discover-
ing the optimal swimming gaits and path following is still valid for
soft-body creatures, but we would need an efficient two-way cou-
pling mechanism to simulate these swimming motions. We leave
this as future work.

We use the sine function to parameterize the joint space. There are
quite a few motions that cannot be depicted by a single sine func-
tion, such as gliding. One possible way to improve this is to use a
weighted sum of multiple sine functions with different amplitudes,



phases and periods [Grzeszczuk and Terzopoulos 1995]. However,
this would require more optimization variables and more computa-
tional resources to discover a swimming gait.

Our simulated swimmers seem to use more energy than the real
creatures do because the simulated water is more viscous than real
water. Even though we use the inviscous Navier-Stokes equation
(Euler equation) to simulate the fluid, there is numerical viscos-
ity. We chose to use relatively coarse grid, and thus incur large
numerical viscosity, to keep the computational time tractable be-
cause CMA optimization needs to simulate the two-way coupling
thousands of times. In addition, while the real aquatic creatures
take advantage of their streamline shaped body to reduce the fluid
drag, the simulated creatures are voxelized and the resultant stair-
step shaped body is not particularly efficient inside the fluid.

9 Conclusion

We have demonstrated that our approach creates natural swimming
behavior for a wide variety of animal bodies. For short-bodied fish
and eels, our results show vortex trails that are in agreement with
laboratory measurements and other published simulation results.
For the other creatures, our optimized motions have the same over-
all appearance of the real-world animals, although lab data is not
available. Our articulated body representation of creature anatomy
is quite general, even allowing us to animate forms such as the
manta ray that are not usually thought of as articulated figures.

There are a number of interesting avenues for future work. There
are many ways this approach could be expanded to give more con-
trol to animators, including different path following strategies and
higher-level behavior control. Our work has concentrated on con-
tinuous motion, but many animals have distinctly different move-
ments for situations such as escaping a predator. It would be inter-
esting to investigate these faster, intermittent motions. Swimming
at the surface of the water could be studied, including motions such
as a human swimmer doing the crawl or a whale jumping out of
the water (breaching). Finally, taking a cue from the work of Karl
Sims, it would be fascinating to simultaneously optimize for both
swimming motion and body shape.
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Contact-aware nonlinear control of dynamic characters. In ACM
SIGGRAPH 2009 papers, ACM, New York, NY, USA, SIG-
GRAPH ’09, 81:1–81:9.

ROBINSON-MOSHER, A., SHINAR, T., GRETARSSON, J., SU, J.,
AND FEDKIW, R. 2008. Two-way coupling of fluids to rigid and
deformable solids and shells. In ACM SIGGRAPH 2008 papers,
ACM, New York, NY, USA, SIGGRAPH ’08, 46:1–46:9.

SHIRGAONKAR, A., CURET, O., PATANKAR, N., AND

MACIVER, M. 2008. The hydrodynamics of ribbon-fin propul-
sion during impulsive motion. J. Exp. Biol 211, 3490–3503.

SIMS, K. 1994. Evolving virtual creatures. In Proceedings of the
21st annual conference on Computer graphics and interactive
techniques, ACM, New York, NY, USA, SIGGRAPH ’94, 15–
22.

SOK, K. W., KIM, M., AND LEE, J. 2007. Simulating biped
behaviors from human motion data. In ACM SIGGRAPH 2007
papers, ACM, New York, NY, USA, SIGGRAPH ’07.

STAM, J. 1999. Stable fluids. In Proceedings of the 26th annual
conference on Computer graphics and interactive techniques,
ACM Press/Addison-Wesley Publishing Co., New York, NY,
USA, SIGGRAPH ’99, 121–128.

STANTON, A., AND UNKRICH, L. 2003. Finding Nemo [motion
picture]. United States: Walt Disney Pictures.

TAKAHASHI, T., UEKI, H., KUNIMATSU, A., AND FUJII, H.
2002. The simulation of fluid-rigid body interaction. In ACM
SIGGRAPH 2002 conference abstracts and applications, ACM,
New York, NY, USA, SIGGRAPH ’02, 266–266.

TAN, J., LIU, K., AND TURK, G. 2011. Stable proportional-
derivative controllers. Computer Graphics and Applications.

TERZOPOULOS, D., TU, X., AND GRZESZCZUK, R. 1994. Arti-
ficial fishes: Autonomous locomotion, perception, behavior, and
learning in a simulated physical world. Artificial Life 1, 4, 327–
351.

TU, X., AND TERZOPOULOS, D. 1994. Artificial fishes: physics,
locomotion, perception, behavior. In Proceedings of the 21st
annual conference on Computer graphics and interactive tech-
niques, ACM, New York, NY, USA, SIGGRAPH ’94, 43–50.

TYTELL, E., AND LAUDER, G. 2004. The hydrodynamics of eel
swimming. I. Wake structure. Journal of Experimental Biology
207, 11, 1825–1841.
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