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Abstract— Model-based trajectory optimization often fails to
find a reference trajectory for under-actuated bipedal robots
performing highly-dynamic, contact-rich tasks in the real world
due to inaccurate physical models. In this paper, we propose a
complete system that automatically designs a reference trajec-
tory that succeeds on tasks in the real world with a very small
number of real world experiments. We adopt existing system
identification techniques and show that, with appropriate model
parameterization and control optimization, an iterative system
identification framework can be effective for designing reference
trajectories. We focus on a set of tasks that leverage the
momentum transfer strategy to rapidly change the whole-
body from an initial configuration to a target configuration
by generating large accelerations at the center of mass and
switching contacts.

I. INTRODUCTION

A classical approach to optimal control problems in
robotics is to compute a reference trajectory offline (e.g. via
Differential Dynamic Programming) and then derive a local
feedback control of perturbations (e.g. Linear-Quadratic-
Gaussian control) around the reference trajectory. Unfortu-
nately, when executing the reference trajectory on robotic
hardware, this type of model-based approach tends to fail
due to modeling assumptions and parameter settings. Various
methods have been proposed to mitigate the issues of model
inconsistency in order to transfer the model-based reference
trajectories to the real world [1]–[4].

However, for an under-actuated biped performing a highly-
dynamic task involving contact switches, the problems due
to model inconsistency can be greatly amplified. Large body
accelerations can magnify inaccurate inertia parameters,
leading to an unstable reference trajectory beyond the range
of perturbation recoverable by the feedback control. To make
matters worse, the under-actuated system imposes Newton-
Euler constraints on the optimal control problem while
contact switches break the control space into fragmented
feasible regions. As a result, a small modeling error can
generate bifurcated consequences. For tasks with the above
mentioned characteristics, manually designing a reference
trajectory that succeeds in the real world is exceedingly
challenging.

Classical system identification provides a framework to
address the general problem of model inconsistency. Given
an initial physical model, an optimal control policy is learned
and applied to the hardware. If the results are different from
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those predicted by the current model, data are collected and
used to improve the model. In this paper, we adopt existing
system identification techniques and show that, with appro-
priate choices of model parameterization and control opti-
mization methods, the iterative system identification frame-
work can be effective for designing reference trajectories
for highly dynamic, contact-rich tasks performed by under-
actuated bipeds. Specifically, we propose a complete system
that automatically designs reference trajectories that succeed
in real world tasks after a very small number of real world
experiments. Our system consists of three main components:
a physical simulator that simulates the dynamics of the
robot and its interaction with the environments, a trajectory
optimization algorithm that searches for the optimal reference
trajectory in the simulation, and a simulation calibration
process to overcome the issues of model inconsistency.

System identification in last decades has focused on iden-
tifying parametric or non-parametric models for relatively
simple dynamic systems. Widely used models include state
transition functions [5], linear models [5], Gaussian pro-
cesses [6], [7], and differential equations [8], [9]. How-
ever, it is challenging to employ these models to control
a high dimensional humanoid robot to perform highly-
dynamic tasks in contact-rich environments because classical
system identification methods would require prohibitively
large amount of data. In contrast, fewer studies have been
conducted to identify parameters for modern physical simula-
tors, such as DART [10] and Mujoco [11]. These simulators
solve the governing differential equations with the linear-
complementarity-program (LCP) contact model to accurately
simulate high-dimensional dynamics and discontinuous con-
tact forces. They provide a good model parameterization but
leave many (simulation) parameters unidentified. In this pa-
per, we use DART as the simulator and apply our simulation
calibration algorithm to identify model parameters.

As a proof of concept, we focus on a set of tasks that
rapidly change whole-body from an initial configuration to
a target configuration by generating large acceleration at
the center of mass and switching contacts. These transition
tasks involve a control strategy called the momentum transfer
strategy [12], in which rapid movements are used to maintain
balance even when the center of mass is outside of the
support polygon. For example, the stand-to-handstand task
takes less than one second for our humanoid to complete.

II. RELATED WORK

Transitioning a bipedal robot from the current pose to
the target pose using a momentum strategy involves whole-



body acceleration and balance during the motion. Some of
transition tasks are extensively studied in robotics, including
sit-to-stand [13]–[16] and lie-to-stand [17]–[20]. While many
of these prior techniques developed control methods for
a specific motion, a few research groups proposed more
generic solutions to handle a wider range of transition tasks.
Jones [21] developed rising motions for both biped and
quadruped using pose tracking, orientation correction and
virtual force. Lin and Huang [22] used motion planning and
dynamic filtering to develop rising up motions from various
initial lying poses. Tassa et al. [23] used Model Predictive
Control to synthesize complex behaviors, including getting
up from an arbitrary pose on the ground. Successful results
were demonstrated in simulation, but not on robot hardware.
In this paper, we aim to develop a general method for a
variety of transition tasks and demonstrate that the control
policies learned in the simulation can be transferred to the
real world.

A controller that is optimized in simulation may not
work in the real environment due to model inconsistency,
also known as the Reality Gap. One way to overcome this
problem is to apply system identification which calibrates
the physical model using the robot’s performance data.
In practice, system identification is often interleaved with
controller optimization to minimize the number of required
robot experiments [5], [24]. System identification optimizes
the model parameters given a model parameterization. Some
widely-used models, such as linear dynamics model and
Gaussian processes were proven effective for continuous
dynamics and relatively simple control tasks, but it is not
clear whether they can be successful for a dynamic system
involving discontinuous contact forces.

Modern physical simulators [25] solve the governing dy-
namics equation with LCP constraints to accurately model
contacts. With the aid of these simulators, model-based ap-
proaches can effectively control humanoid robots in contact
rich scenarios [26], [27]. However, system identification for
these modern physical simulators has not been extensively
studied [28]. When applying system identification for tasks
with frequent contact changes, the process usually requires
specially designed robot experiments independent of the
control tasks of interest because the model parameters can be
inferred more accurately from a contact-free behavior [28].
As a result, a large amount of data are needed for system
identification, in the hope that the collected data cover
the important and relevant regions of the control space. In
contrast, our system tightly couples simulation calibration
and trajectory optimization. The current reference trajectory
that is optimized in the simulation is used as the exper-
iment for system identification. Using Covariance Matrix
Adaptation (CMA) [29], we are able to estimate parameters
with frequent contact changes in the experiments. CMA is a
stochastic sampling-based optimization algorithm, which has
been successfully applied to search for control parameters
when the problem domain is highly discontinuous [30]–[32].

Fig. 1. Overview of our algorithm.

III. OVERVIEW

We have developed a system that can automatically design
reference trajectories for robots to execute transition motions
(Figure 1). Given the specification of the robot, including its
body shape, the physical properties of each body, and the
types of joints, we build a physical simulation using DART.
The trajectory optimization subsystem runs thousands of sim-
ulations to search for the optimal trajectory that maximizes
the task-related fitness function. We then test this optimal
trajectory on the robot. If the robot successfully completes
the task, a solution is found and our algorithm terminates.
Otherwise, we record the robot performance data and feed
it into the simulation calibration subsystem. Simulation cal-
ibration runs another optimization, which searches for the
optimal simulation parameters to minimize the discrepancy
between the performance of the robot in the simulation
and in the real world. The loop of trajectory optimization
and simulation calibration is performed iteratively until the
reference trajectory works successfully on the real robot. In
the next three sections, we will present the algorithmic details
of these components.

IV. PHYSICAL SIMULATION

A. Dynamics Equation

We model the robot as an articulated rigid body system in
our simulator, which satisfies the following dynamics equa-
tions, non-penetration and linear complementarity conditions
for contact points.

M(q)q̈ + C(q, q̇) = τ + J(q)T f (1)
d(q) ≥ 0

d(q)T f = 0

f ∈ K

where M(q) is the mass matrix and C(q, q̇) is the Coriolis
and Centrifugal force. τ are joint torques exerted by the
actuators. An actuator model that computes τ based on the
current state and a reference pose is presented in the next
section. J(q) is the Jacobian matrix and f is the contact
force. d(q) is the distance of the contact to the ground and
K is the friction cone. We use DART to solve the above
equations to simulate the dynamics of the robot.

B. Actuator Model

A realistic robot simulation relies heavily on an accurate
actuator model. A common practice is to set the same PID
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Fig. 2. The trajectories of the reference (blue) and the measured (green)
joint angle for acutator identification.

gains in the simulation as those in the servo. However,
Dynamixel AX-18 servos, used on our robot (ROBOTIS
BIOLOID GP), do not support PID control. Although the
servo can track an input reference angle q̄, the relation
between the joint error q̄ − q and the output torque τ is
unclear. We derive an actuator model based on the ideal DC
motor assumption and the specification of the servo:

τ = −kp(q − q̄)− kdq̇ − kc sgn(q̇) (2)

where kp, kd and kc are the actuator gains. The detailed
derivation of the actuator model (eq. (2)) can be found in
the Appendix.

Accurately identifying these gains would require a large
number of carefully designed experiments to be run on each
of the actuators. In contrast, we choose to run only one
simple experiment on one actuator. This simple experiment
gives us an initial guess of the gains. We then rely on
simulation calibration to refine this estimate.

In this experiment, we clamp the entire robot on a table
except for the left foot. We then send a periodic reference
joint angle q̄(t) that oscillates between two extreme angles
(blue curve in Figure 2) to the servo at the left ankle. We
record the trajectory of the actual joint angle q(t) throughout
the experiment (green curve in Figure 2).

Given q(t) and q̄(t), we apply regression to estimate the
actuator gains:

min
kp,kd,kc

∫
||Iq̈(t)+kp(q(t)−q̄(t))+kdq̇(t)+kc sgn(q̇(t))||2dt

where I is the moment of inertia of the foot with respect to
the rotating axis. The above equation is derived by plugging
into τ = Iq̈ + İ q̇ and the fact that İ q̇ = 0 because the
foot is a rigid body that rotates along a fixed axis. Our
experiments and computation show that the actuator gains
are kp = 9.272(N ·m/rad), kd = 0.3069(N ·m · s/rad),
and kc = 0.03(N ·m).

V. TRAJECTORY OPTIMIZATION

Given the physical simulator, we can design controllers
to enable the robot to achieve various transition tasks in the
simulated environment. The four tasks that we use to test
our system are: rising from a sitting, leaning or kneeling
position and flipping towards a handstand position (Figures
3, 4, 6 and 7). For each task, the initial pose q̄(0) and the final

pose q̄(T ) are given as input. The goal of this optimization
is to compute a reference trajectory q̄(t) so that the robot can
move from the initial to the final pose without losing balance.
We purposefully choose to control the robot with only open-
loop reference trajectories1, which produces control signal
q̄(t) as a function of time t independent of the states of the
robot. Using only the open-loop reference trajectory, we can
better evaluate our system during the simulation calibration
process, because the accuracy of the simulation becomes
more critical if no feedback balance control is involved.

A. Trajectory Parameterization

We parameterize the reference trajectory q̄(t) with a sparse
set of keyframes {q̄i}i=0...n at time {ti}i=0...n, where the
first q̄0 and last keyframes q̄n are given, but the final
time T , which equals tn, is optimized. The optimization
searches for both the joint configuration and the time of
each keyframe and the reference trajectory is the linear
interpolation between the keyframes. In our implementation,
the number of keyframes n+1 is fixed and manually specified
by the user, although it is possible to incorporate it in an
outer-loop optimization.

B. Fitness Function

The criterion of success for all the tasks is whether
the robot remains stably upright (or upside down in the
last task) at the end of its motion. We use the following
fitness function to reward the trajectories that keep the robot
balanced throughout the entire motion.

{q̄i}i=1...n−1, {ti}i=1...n = argmax

∫ T+1

0

1

|α(t)|+ ε
dt

(3)
where α is the angle between the up direction in the local
frame of the robot’s torso and the up (or down in the last task)
direction in the global frame. It measures how far the robot
is from losing its balance. ε is a small positive number to
prevent the denominator from being zero. We choose ε = 0.1
in all of our tasks. T (same as tn) is the time when the
robot reaches the final pose. Note that the upper limit of the
integration is T + 1. The extra one second is to wait for the
robot to settle down. We use the time horizon T +1 because
it is still possible for the robot to fall while settling down.
The fitness function will penalize if this situation occurs.

C. Optimization with CMA

During the transition motion, discrete contact events can
happen frequently. They impose additional challenges for
the continuous optimization algorithms that rely on gradient
information. To overcome this challenge, we apply a sample-
based stochastic optimization algorithm, CMA, to optimize
the reference trajectory. CMA does not need gradient infor-
mation and can explore multiple local minima. This makes
it ideal for optimizing open loop trajectories or feedback
controllers for transition tasks. For the completeness of the

1The internal feedback loop in the actuators still exist but we do not alter
this feedback loop in our trajectory optimization.



paper, we will briefly describe the CMA algorithm here.
Please refer to the original paper [29] for more details. At
each iteration, a population of CMA samples are drawn from
an underlying Gaussian distribution. In our case, a CMA
sample is a set of keyframes and their associated time. Each
CMA sample is used to control the robot in the simulation
and evaluated using eq.(3). The samples with lower fitness
values are discarded. The underlying Gaussian distribution is
updated according to the remaining good samples. With more
iterations, the distribution gradually converges to a better
region of the search space. After a maximum number of
iterations, we choose the best CMA sample and reconstruct
the optimal reference trajectory q̄(t).

VI. SIMULATION CALIBRATION

Although the optimal reference trajectory q̄(t) can work
effectively in the simulation, it may fail in the real world.
One cause of this failure is the erroneous parameter settings
in the physical simulation, such as the mass, the moment of
inertia, the COM of each body segment, and the gains of the
actuators. Usually, simulation parameters are set according
to the specification of the robot. However, we find that many
of these specifications are inaccurate. For example, there is
about 40% of error in the total mass of our robot between
the open-source CAD file and our own measurement, which
highlights the importance of simulation calibration in our
system. We formulate an optimization that searches for
the simulation parameters θ to minimize the discrepancy
between the simulated results and the robot performance in
the real environment.

θ = arg min
1

n

n∑
i=1

∫ T+1

0

||q̃i(t)− qi(t;θ)||2Wdt (4)

where q(t;θ) is the sequence of simulated robot states with
simulation parameter θ. The subscript i denotes that this
sequence is generated using the optimal reference trajectory
found in the ith iteration of the “trajectory optimization-
simulation calibration” loop. q̃i(t) is the real robot states2 by
executing the same reference trajectory. Note that q and q̃
here include both the joint angles and the global position and
orientation of the robot’s torso. W is a weight matrix, which
encapsulates the relative importance of each joint. In our
case, we use the same W among all the tasks and choose the
W to heavily penalize the difference in the torso orientation.

Although dozens of simulation parameters θ can poten-
tially be optimized, we only focus on the most relevant
parameters to our tasks: changing postures and maintaining
balance. As such, we calibrate only the gains (kp, kd and
kc) that are shared by all the actuators and the COM of
each body segment on the body frame because the actuator
gains are critical to posture change and the COM is vital to
balance. Note that although we have a process to identify the
actuator gains (Section IV-B), that simple experiment does
not give accurate results. Instead, it gives a good initial guess

2We execute the same reference trajectory three times and average the
three sequences as q̃(t) in the robot experiments to smooth out the noise
and slight perturbations in initial conditions.

of the actuator gains to be used in simulation calibration. By
focusing on actuator gains and COM’s, utilizing symmetry
of the robot, our simulation calibration needs to optimize 30
simulation parameters.

Once again we use the gradient-free CMA to optimize eq.
(4) due to the presence of contact changes in the transition
task and the complex interplay between the simulation results
and the simulation parameters. In this case, each CMA
sample is a candidate set of simulation parameters θ. To
evaluate each CMA sample, we set the parameters θ in the
physical simulator, simulate the robot movement, and then
evaluate the objective function eq. (4).

VII. RESULTS

We evaluate our system on four tasks. Please watch
the accompanying video3 for the robot performance in the
simulation and in the real world.

A. Experiment Setup

We use BIOLOID GP as our robot platform. The hardware
includes 22 degrees of freedom, 18 of which are controllable
by Dynamixel AX-12/AX-18 servos. The remaining six
degrees of freedom, indicating the torso position and orienta-
tion in the Cartesian coordinates, are unactuated. To control
the robot, a master program on the PC writes the reference
pose q̄ to the serial port connected to the robot. A slave
program that runs on the robot’s onboard microprocessor
listens to this port and sends the reference joint angle to each
actuator. At the same time, the robot performance data x̃ is
measured and sent back to the computer. BIOLOID GP has
limited sensing capabilities. It has one two-axis Gyro sensor
that we do not use. Instead, we glue four reflective markers
on the robot’s torso and use a VICON motion capture system
to measure global position and orientation of the torso. We
also read out the joint angles from the servos.

Our system is implemented in C++ and runs on a laptop
with a 2.6GHz quad-core CPU. We use DART to simulate
the physics. We find that all the tasks can be achieved
with symmetric lower body motions, which enables us to
reduce the dimensionality of the control space in trajectory
optimization. For each simulation calibration, we collect
three episodes of robot data by running the same reference
trajectory three times to average out the noise and other
possible perturbations. Each episode is approximately two
seconds. We use 32 samples per iteration and at most 50
iterations in CMA, which takes about 15 minutes to find an
optimal solution.

B. Rising from a Sitting Position

The first task is to rise from a chair (Figure 3). The initial
and the final poses q0 and q2 are shown in the leftmost and
rightmost images in Figure 3. The trajectory optimization
needs to search for an additional inbetween keyframe q1, as
well as the time t1 and t2 of these keyframes.

We intentionally choose the initial pose such that the feet
are far from the projection of the robot’s COM on the ground.

3https://dl.dropboxusercontent.com/u/36899427/iros2016LowRes.mp4



Fig. 3. The results of the sit-to-stand task in the simulation and on the real robot.

Though simple, this experiment is a good test for dynamic
balance because the robot cannot simply track the extended
positions of knees and hips to rise; it would fall backward
immediately. Our method successfully computes a reference
trajectory that enables the robot to stand up in the simulation:
the robot first produces a forward momentum by quickly
leaning its upper body to the front. It then starts to extend
the hips and the knees at the moment when the COM is
moving towards the supporting feet.

When the computed trajectory is applied to the hardware,
the robot is able to rise successfully without the need of
simulation calibration. This shows that the “Reality Gap”
is not always a problem. Any proposed technique that
attempts to address the issue needs to be tested on sufficiently
challenging tasks in which the stability region is small and
accurate model parameters are critical.

C. Rising from a Leaning Position

In this task, the robot is required to rise from leaning on
the wall to a standing position (Figure 4). The hip joints are
initially bent and straightened out in the final configuration
while all other joints remain the same. The initial and final
poses are the only two keyframes for this task.

Fig. 4. The results of the lean-to-stand task in the simulation and on the
real robot.

The goal of trajectory optimization is to find an appro-
priate time interval T between these two keyframes. This
one-dimensional problem largely simplifies the challenge
of trajectory optimization. However, without the simulation
calibration, the trajectory optimization fails to find any
solution that resulted in a successful rising motion. If the
time interval is too long (T > 0.11s), the virtual robot
does not accelerate sufficiently to rise. If the time interval
is too short (T ≤ 0.11s), the virtual robot tends to push off
the wall with a large force and fall forward to the ground.
When tracking the optimal trajectory with the highest fitness
value (T = 0.11s) in the real world, the robot also fails
to rise but in a different way from the simulation result.
That is, the robot fails to rise due to the lack of momentum,
while the virtual robot overshoots and falls forward in the
simulation. Figure 5 compares the trajectories of the robot’s
torso orientation in the simulation (blue curve) and in the
real world (red curve). After one iteration of simulation
calibration, the discrepancy is greatly reduced (Figure 5
green curve), and the optimal reference trajectory leads to
successful motion both in the simulation and in the real
world. This experiment only requires six seconds of robot
data.
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the simulation (before/after calibration) and in the real environment.



Fig. 6. The results of the kneel-to-stand task in the simulation and on the real robot.

Fig. 7. The results of the stand-to-handstand task in the simulation and on the real robot.

D. Rising from a Kneeling Position

Figure 6 shows that the robot stands up from a kneeling
pose. Between the user-specified initial and final poses, the
optimal trajectory consists of two additional keyframes. The
robot first leans its upper-body backwards. As its COM is
moving to the back, it quickly bends the hip, flexes its ankles
and stands up without using hands for support. This task
requires precise timing and balance control and is a good
example for exposing the issue of model inconsistency. Our
initial simulator finds an optimal trajectory which succeeds
in the simulation, but is not able to transfer the success to the
real world. After one iteration and with six seconds of data,
the robot efficiently learns to rise from a kneeing position.

E. Flipping to a Handstand Position

We test our system with a challenging gymnastic action:
flipping to a handstand position from a standing pose (Fig-
ure 7). There are two unique challenges in this task. First,
the speed and the curvature of the initial arching motion is
crucial and only a narrow range of such speed and curvature
can lead to a balanced handstand. Second, the USB cable
that connects the robot to the computer will inevitably hit the

ground during the backflip and inject a strong perturbation
that is not modeled in our simulation.

With two iterations of simulation calibration and trajectory
optimization, our system finds a successful trajectory that
works both in the simulation and in the real world: The robot
arches back rapidly and lifts its feet after the arms touch the
ground. This example shows that our system can automati-
cally design open loop reference trajectories for challenging
tasks, even with significant unmodeled perturbations.

VIII. DISCUSSION

One important component of our system is the simulation
calibration. The results show that it is an effective strategy
to narrow down the Reality Gap, with a minimal number of
robot experiments. In all the examples, our method only re-
quires at most two iterations of calibration (or approximately
12 seconds of robot data) to transfer the reference trajectory
to the real robot. This amount of robot data is far less than
those needed in typical system identification methods.

Similar to other system identification methods, the param-
eters optimized in the simulation calibration process may not
be the true physical parameters. For example, we observe that



TABLE I
GENERALIZABILITY OF THE CALIBRATED SIMULATION

Tasks I II III
I Succeed Fail Fail
II Fail Succeed Fail
III Succeed Fail Succeed

I&II Succeed Succeed Succeed
I&III Succeed Fail Succeed
II&III Succeed Succeed Succeed

I&II&III Succeed Succeed Succeed

the simulation parameters optimized for the task of lean-to-
stand are different from those optimized for kneel-to-stand.
This could be caused by the errors from other simulation
parameters that we do not calibrate. This implies that the
calibrated simulator is fit to the current task and may not be
useful for a different task. Although this could be a problem
if the goal is to estimate the true physical parameters of the
system, it is not a problem in our case because our goal is
to find a reference trajectory for a specific task. In summary,
tightly coupling simulation calibration with a specific control
task makes it possible to efficiently use only a small amount
of robot data.

We perform two additional experiments to investigate
the generalizability of the calibrated simulator. In the first
experiment, we calibrate the simulation for one task (e.g.
lean-to-stand) and use it to optimize the reference trajectory
for a different task (e.g. sit-to-stand). The results can be
found in Table I. We refer Task I to Task III as lean-to-
stand, sit-to-stand, and kneel-to-stand respectively. The first
three rows show that the simulator optimized for a single
task cannot be generalized to other tasks in most cases.

In the second experiment, we calibrate the simulator with
multiple tasks (e.g. lean-to-stand and sit-to-stand). The last
four rows of Table I show that the generalizability across
Task I, II and III is greatly improved. Specifically, using
multiple training tasks to calibrate the simulator will improve
the generalizability, but only if the tasks are similar. For
example, Task IV (stand-to-handstand) is drastically different
from the first three tasks and can compromise the calibration
process if included in the training task set.

These experiments indicate that if we need to design
trajectories for a group of similar tasks, we may not need to
perform simulation calibration for each task independently.
It is possible that after calibrating the simulator for a small
set of tasks, the reference trajectories of the remaining tasks
can be optimized in simulation without further calibration.

IX. CONCLUSION

We have presented a complete pipeline to automatically
design open loop reference trajectories for robots. The so-
lution consists of a set of powerful computational tools:
physical simulation, trajectory optimization and simulation
calibration. Our method enables efficient reference trajec-
tory design for a humanoid robot to achieve four different
tasks: lean-to-stand, sit-to-stand, kneel-to-stand and stand-to-
handstand.

There are two avenues for future work. First, we will
include more simulation parameters in simulation calibration.

Fig. 8. The mapping between q − q̄ and U for an AX-18 actuator [33].
The x-axis is q − q̄ while the y-axis is U .

In this paper, we have shown that adjusting the COM and
the actuator gains are enough for our needs, but other sim-
ulation parameters might also be important for other tasks.
A potential issue of including more simulation parameters is
the increased risk of overfitting. Performing some automatic
prioritizing and selection on candidate parameters would be
a promising future research. Second, we believe that our
system can be generalized to control other types of motions,
such as walking, biking or more challenging gymnastic
stunts. In these tasks, feedback control is necessary. In the
future, we plan to extend our system to include feedback
control and test it on a wider range of tasks.

APPENDIX

In this Appendix, we derive the actuator model (eq.(2))
from the specifications of the Dynamixel AX-18 servo (Fig-
ure 8). The servo maps the difference between the desired
and the actual joint angle q − q̄ to the power level U .
The intervals A and D determine the proportion gain for
counter-clockwise and clockwise motions respectively. B and
C are the compliance margins, which are thresholds below
which the servo stops outputting any torque. E, the punch,
is the minimum power level before the servo shuts down. In
practice, we set A and D the same. In addition, since B, C
and E are much smaller than A or D, we ignore their effects
and approximate the mapping as linear within the intervals
q − q̄ ∈ A

⋃
B
⋃
C
⋃
D with the slope ke:

U = ke(q − q̄)

To derive the relation between the power level U and the
output torque τ , we adopt a model for the ideal DC motor
[34]. It is a valid assumption because the AX-18 servos use
high-quality DC motors. Considering the power balance in
the motor at a constant voltage U:

Pelectric = Pmechanic + Pheat (5)

The electrical power Pelectric can be decomposed into the
mechanical power Pmechanic and the heat Pheat. From
eq.(5), we can get the following relation:

UI = q̇τmotor +RI2 (6)

where I is the current and R is the motor winding resistance.
In an ideal DC motor, the torque is linearly proportional



to the current τmotor = kτI . Plugging it into the above
equation, we have:

U = kτ q̇ +
R

kτ
τmotor (7)

where kτ is the torque constant. The total torque τmotor is
the sum of the output torque τ that drives the motor shaft
and the frictional torque τf inside the motor:

τmotor = τ + τf (8)

The friction torque can be further divided into viscous
friction and Coulomb friction [34]:

τf = kv q̇ + kc sgn(q̇) (9)

where kv and kc are friction coefficients for the viscous and
Coulomb friction respectively. sgn(x) is the sign function
that equals 1 if x is positive, -1 if negative and 0 otherwise.

Combining eq.(7), (8) and (9), we get the actuator model:

τ =
kτke
R

(q − q̄) + (−kv −
k2τ
R

)q̇ − kc sgn(q̇)

= −kp(q − q̄)− kdq̇ − kc sgn(q̇)

where kp = −kτkeR and kd = kv +
k2τ
R .

ACKNOWLEDGMENT

We thank the anonymous reviewers for their helpful com-
ments. We want to thank Greg Turk, Frank Dellaert, James
O’Brien, Jarek Rossignac, Sehoon Ha, Yufei Bai and Yuting
Gu for their help on this research.

REFERENCES

[1] L. Ljung, Ed., System Identification (2Nd Ed.): Theory for the User.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 1999.

[2] J. Morimoto, G. Zeglin, and C. G. Atkeson, “Minimax differential
dynamic programming: Application to a biped walking robot,” in
Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003
IEEE/RSJ International Conference on, vol. 2. IEEE, 2003, pp. 1927–
1932.

[3] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances in
Neural Information Processing Systems 19, Proceedings of the Twen-
tieth Annual Conference on Neural Information Processing Systems,
Vancouver, British Columbia, Canada, December 4-7, 2006, 2006, pp.
1–8.

[4] D. Mitrovic, S. Klanke, and S. Vijayakumar, Adaptive Optimal Feed-
back Control with Learned Internal Dynamics Models. Springer-
Verlag, 2010.

[5] P. Abbeel and A. Y. Ng, “Exploration and apprenticeship
learning in reinforcement learning,” in Proceedings of the 22Nd
International Conference on Machine Learning, ser. ICML ’05.
New York, NY, USA: ACM, 2005, pp. 1–8. [Online]. Available:
http://doi.acm.org/10.1145/1102351.1102352

[6] M. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” in Proceedings of the 28th
International Conference on machine learning (ICML-11), 2011, pp.
465–472.

[7] S. Ha and K. Yamane, “Reducing Hardware Experiments for Model
Learning and Policy Optimization,” IROS, 2015.

[8] J. C. Zagal, J. Ruiz-del-Solar, and P. Vallejos, “Back-to-Reality:
Crossing the reality gap in evolutionary robotics,” in IAV 2004:
Proceedings 5th IFAC Symposium on Intelligent Autonomous Vehicles.
Elsevier Science Publishers B.V., 2004.

[9] P. Abbeel, M. Quigley, and A. Y. Ng, “Using inaccurate models
in reinforcement learning,” in Proceedings of the 23rd International
Conference on Machine Learning, ser. ICML ’06, 2006, pp. 1–8.

[10] C. K. Liu and S. Jain, “A short tutorial on multibody dynamics,”
Georgia Institute of Technology, School of Interactive Computing,
Tech. Rep. GIT-GVU-15-01-1, 08 2012.

[11] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics
engine for model-based control (under review), 2011a. url
http://www.cs.washington.edu/homes/todorov/papers/mujoco. pdf.”

[12] D. M. Scarborough, C. A. McGibbon, and D. E. Krebs, “Chair
rise strategies in older adults with functional limitations,” Journal of
rehabilitation research and development, vol. 44, no. 1, p. 33, 2007.

[13] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Autonomous
reactive control for simulated humanoids.” in ICRA. IEEE, 2003, pp.
917–924.

[14] S. Iida, M. Kanoh, S. Kato, and H. Itoh, “Reinforcement learning
for motion control of humanoid robots.” in IROS. IEEE, 2004, pp.
3153–3157.

[15] S. Pchelkin, A. S. Shiriaev, L. B. Freidovich, U. Mettin, S. V.
Gusev, and W. Kwon, “Natural sit-down and chair-rise motions for
a humanoid robot.” in CDC. IEEE, 2010, pp. 1136–1141.

[16] M. Mistry, A. Murai, K. Yamane, and J. K. Hodgins, “Sit-to-stand
task on a humanoid robot from human demonstration.” in Humanoids.
IEEE, 2010, pp. 218–223.

[17] J. Morimoto and K. Doya, “Reinforcement learning of dynamic motor
sequence: Learning to stand up,” in Intelligent Robots and Systems,
1998. Proceedings., 1998 IEEE/RSJ International Conference on,
vol. 3. IEEE, 1998, pp. 1721–1726.

[18] P. Faloutsos, M. van de Panne, and D. Terzopoulos, “Composable
controllers for physics-based character animation,” in Proceedings
of the 28th Annual Conference on Computer Graphics and
Interactive Techniques, ser. SIGGRAPH ’01. New York,
NY, USA: ACM, 2001, pp. 251–260. [Online]. Available:
http://doi.acm.org/10.1145/383259.383287

[19] H. Hirukawa, S. Kajita, F. Kanehiro, K. Kaneko, and T. Isozumi, “The
human-size humanoid robot that can walk, lie down and get up,” Int.
J. Rob. Res., vol. 24, no. 9, pp. 755–769, Sept. 2005.

[20] F. Kanehiro, K. Fujiwara, H. Hirukawa, S. Nakaoka, and M. Morisawa,
“Getting up motion planning using mahalanobis distance.” in ICRA.
IEEE, 2007, pp. 2540–2545.

[21] B. J. Jones, “Rising motion controllers for physically simulated char-
acters,” Master’s thesis, The University Of British Columbia, 2011.

[22] W.-C. Lin and Y.-J. Huang, “Animating rising up from various lying
postures and environments,” The Visual Computer, vol. 28, no. 4, pp.
413–424, 2012.

[23] Y. Tassa, T. Erez, and E. Todorov, “Synthesis and stabilization of
complex behaviors through online trajectory optimization,” in IROS.
IEEE, 2012, pp. 4906–4913.

[24] M. Gevers et al., “System identification without lennart ljung: what
would have been different?”

[25] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ode and physx,” in
Robotics and Automation (ICRA), 2015 IEEE International Conference
on. IEEE, 2015, pp. 4397–4404.

[26] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body
dynamic motion planning that transfers to physical humanoids,” IROS,
2015.

[27] S. Ha and C. K. Liu, “Multiple contact planning for minimizing
damage of humanoid falls,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 2761–
2767.

[28] S. Kolev and E. Todorov, “Physically consistent state estimation and
system identification for contacts,” in Humanoid Robots (Humanoids),
2015 IEEE-RAS 15th International Conference on. IEEE, 2015, pp.
1036–1043.

[29] N. Hansen, The CMA Evolution Strategy: A Tutorial, 2009.
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