
Stable Proportional-Derivative Controllers

Jie Tan∗ Karen Liu† Greg Turk‡

Georgia Institute of Technology

Abstract

In computer animation, a common technique for tracking the mo-
tion of characters is the proportional-derivative (PD) controller. In
this paper, we introduce a new formulation of the PD controller that
allows arbitrarily high gains, even at large time steps. The key to
our approach is to determine the joint forces and torques while tak-
ing into account the positions and velocities of the character in the
next time step. The method is stable even when combined with a
physics simulator that uses simple Euler integration. We demon-
strate that these new, stable PD controllers can be used in a variety
of ways, including motion tracking in a physics simulator, keyframe
interpolation with secondary motion, and constraint satisfaction for
simulation.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Character animation, proportional-derivative con-
troller, constrained dynamics, keyframe interpolation.

1 Introduction

Unlike passive dynamic systems, simulating human motion re-
quires active control that models the functionality of our muscu-
loskeletal system. Applying appropriate control forces on the vir-
tual character is critical to simulate motion that accomplishes de-
sired tasks, as well as to appear realistic and humanlike. However,
control forces are also a double-edged sword in a discrete-time nu-
merical simulation. When applied appropriately, a control force can
stabilize an otherwise unstable system due to numerical errors. On
the other hand, when the control force itself is unstable, the simula-
tion becomes unstable no matter what numerical integration scheme
is used.

One common approach to active control is to equip the character
with a proportional-derivative (PD) servo at each actuated joint.
Acting like a spring and a damper, a PD servo provides a sim-
ple framework to compute control forces for tracking a kinematic
state of a joint trajectory. However, when precise tracking with
high gains is desired, PD servos typically produce unstable control
forces which require the numerical simulation to take small time
steps. Consequently, the animator has to choose between tracking
accuracy and simulation efficiency when using the PD framework.

∗e-mail: jtan34@gatech.edu
†e-mail: karenliu@cc.gatech.edu
‡e-mail: turk@cc.gatech.edu

We seek an improved PD control that applies stable control forces
while maintaining the intuitive PD framework. Our new formula-
tion, termed “Stable proportional-derivative (SPD)” servo, decou-
ples the relation between high gain and small time step, so that
accurate tracking can be achieved without sacrificing simulation ef-
ficiency. The key idea is to formulate PD control using the state
of the character in the next time step, rather than the current state.
Because the control force is computed by the deviation between the
desired state and the as yet unknown state, we approximate the con-
trol force at the next time step by solving an implicit equation. Even
though the idea is inspired by the fully implicit integrator [Baraff
and Witkin 1998], we emphasize that there are differences and that
these differences are important. In Baraff and Witkin’s paper, cloth
is a passive object without active controls and they adopted a fully
implicit integrator to stablize the simulation. In contrast, characters
can control themselves with active joint torques, which plays an im-
portant role in maintaining the stability of the simulation. Thus, we
only use the state at the next time step to calculate a stable control
force and use the forward Euler integrator for the integration. Com-
pared with the fully implicit integrator, SPD is more computational
efficient.

Although the underlying algorithms are different, SPD is concep-
tually equivalent to PD but provides much needed stability when
high gains are applied. We can replace existing PD controllers with
SPD in a variety of applications, without impacting the underlying
control or simulation mechanisms. We first show that dynamically
tracking motion capture data can be stably simulated with large time
steps (33 ms) using first-order explicit Euler integration. We also
demonstrate that interpolation of keyframes can create natural sec-
ondary motion without tedious parameter tuning. Finally, we show
that our controller can replace the penalty method for approximat-
ing constraints in a dynamic system.

2 Related Work

PD controllers are widely used in computer animation and robotics
due to their simplicity in formulation and their efficiency for on-
line computation. Early work in physics-based character animation
used PD servos as the fundamental building blocks for complex
motor control strategies [Hodgins et al. 1995]. PD controllers also
provide an intuitive framework to integrate physical simulation with
motion capture data. Zordan and Hodgins simulate a virtual charac-
ter tracking a reference mocap sequence while responding to exter-
nal perturbations [Zordan and Hodgins 1999; Zordan and Hodgins
2002].

The concept of PD servo is closely related to the penalty method
for enforcing constraints in a forward simulation. The penalty
method [Moore and Wilhelms 1988] uses a spring to maintain con-
straint by calculating the restoring force based on the deviations
from the constraints. Similar to PD servos, the spring in the penalty
method introduces numerical instability when high gain is used to
precisely enforce the constraint [Witkin et al. 1990]. Nevertheless,
due to its simplicity, the penalty method is often more preferable
than computing exact constraint forces via Lagrangian multipliers.
It has been widely used in handling collision and contact, enforcing
the joint limitations and combating numerical drift.

Despite their popularity, PD controllers have many drawbacks. For
example, it is difficult to apply the PD servo in a complex envi-

ronment, such as fluid, because it does not take external forces into
consideration. Even in a simpler environment, Van de Panne [1996]
pointed out that PD controllers have a hard time tracking the desired
pose due to gravity and contact forces. Neff and Fiume [2002] dis-
cussed the inter-dependency of position control and stiffness con-
trol. Wilhelms [1986] reported that tuning the gain for one joint
can adversely affect others. Many of these drawbacks stem from
the stability problem of the PD.

Several researchers have proposed other techniques to improve or
complement PD controllers. Yin et al. [Yin et al. 2003] applies
anticipatory feed forward control together with low-gain feedback.
The feedforward torques can be computed offline via inverse dy-
namics or online via feedback error learning. Combining feed-
forward control, it is possible to track the reference motion pre-
cisely using low-gain PD servos. Neff and Fiume [Neff and Fiume
2002] formulate an antagonistic controller that decouples the stiff-
ness control from position control by equipping each DOF with a
pair of ideal springs in opposition to each other. Weinstein et al.
[2008] also improved the stability of PD controller by using the an-
alytical solution on each joint individually. Different from conven-
tional PD controllers, their method took an impulse-based approach
rather than working with forces and accelerations and their method
relies on the global post-stablization to control multiple joints si-
multaneously.

3 Stable PD Controllers

Before we introduce the formulation of SPD, we first review how
conventional PD controllers are used in numerical simulation and
their limitations. In a discretized time domain, a PD controller can
be expressed as:

τ
n =−kp(q

n − q̄n)− kd q̇n (1)

where q and q̇ are the position and velocity of the state at time step
n, and where q̄ is the desired position. kp and kd are the proportional
gain and derivative gain respectively. The resulting control force τ

n

is then included in a numerical simulation, along with other forces
such as gravity. The stability issue arises when the controller needs
to quickly reduce the deviation from the desired position. In this
situation, the proportional gain kp must set to a large value, and the
control force can become numerically unstable as the simulation
progresses. To improve the stability of a high gain PD controller,
we have to sacrifice the efficiency of the simulation by reducing
the time step significantly. As a result, PD controllers suffer from
undesired coupling between the tracking accuracy and simulation
efficiency.

3.1 SPD Formulation

Instead of using the current state qn to compute the control force, we
propose a new formulation, SPD, that computes the control forces
using the next time step qn+1:

τ
n =−kp(q

n+1 − q̄n+1)− kd q̇n+1 (2)

Since we do not know the next state, we expand qn+1 and q̇n+1

using a Taylor series and truncate all but the first two terms.

qn+1 = qn +∆tq̇n

q̇n+1 = q̇n +∆tq̈n

Equation (2) can be expressed as:

τ
n =−kp(q

n +∆tq̇n − q̄n+1)− kd(q̇
n +∆tq̈n) (3)

In practice, PD servos with non-zero reference velocity (4) is often
used to reduce the lag of tracking.

τ
n =−kp(q

n − q̄n)− kd(q̇
n − ¯̇qn) (4)

where the reference velocity ¯̇qn is calculated either analytically or
numerically. SPD formulation can also be extended to include the
non-zero reference velocity term to eliminate the lag:

τ
n =−kp(q

n +∆tq̇n − q̄n+1)− kd(q̇
n +∆tq̈n − ¯̇qn+1) (5)

3.2 A Toy Example

Consider a simple dynamic system with only one degree of free-
dom, q. The goal of the controller in the system is to maintain the
position of q at q̄. Suppose the initial position and initial velocity
are q0 = p and q̇0 = ṗ. The dynamic equation of this 1D system is

mq̈0 = τ
0 (6)

= −kp(p+∆t ṗ− q̄)− kd(ṗ+∆tq̈0) (7)

Rearranging the equation, we arrive at

q̈0 =−
kp(p+∆t ṗ− q̄)+ kd ṗ

m+ kd∆t
(8)

To illustrate the stability of SPD, we make kp approach infinity
and kd = kp∆t. In practice, kd ≥ kp∆t should be maintained to
ensure the stability. Please see Appendix for further discussion.
Plugging kp and kd in this extreme example, the acceleration be-

comes q̈0 = − p+2∆t ṗ−q̄

∆t2 . After one step of forward Euler integra-

tion, the velocity becomes q̇1 =− ṗ− p−q̄
∆t and the position becomes

q1 = p+∆t ṗ. After another step of forward Euler integration, the
position becomes q2 = q̄. Through this toy example, we find that
even though we have chosen very large PD gains (infinity here) and
an arbitrary time step, the stability of the controller is still guaran-
teed and the motion converges to the desired trajectory quickly.

3.3 Controlling Articulated Rigid Bodies

The formulation of SPD can be applied to nonlinear dynamic sys-
tems with multiple degrees of freedom. For example, we can apply
SPD to an articulated rigid body system expressed in generalized
coordinates.

M(q)q̈+C(q, q̇) = τint + τext (9)

where q, q̇ and q̈ are vectors of positions, velocities and acceler-
ations of the degrees of freedom respectively. M(q) is the mass
matrix and C(q, q̇) is the centrifugal force. τext indicates other ex-
ternal force such as gravity. The internal force τint can be computed
via our SPD formulation:

τint =−Kp(q
n + q̇n

∆t − q̄n+1)−Kd(q̇
n + q̈n

∆t) (10)

where both Kp and Kd are diagonal matrices that indicate the gains
and damping coefficients. The acceleration can be written as:

q̈n = (M+Kd∆t)−1(−C−Kp(q
n + q̇n

∆t − q̄n+1)−Kd q̇n + τext)
(11)

We use the explicit Euler method to integrate to the next time step.

We compare our SPD formulation with the fully implicit integrator
when simulating articulated rigid bodies. Since M is nonlinearly
dependent on q and C is nonlinearly dependent on q and q̇, in an
implicit integrator, both M and C need to be linearized. However,
the linearization of M and C is non-trivial because this involves

Figure 4: For each chosen gain kp, we simulate PD (red) and SPD
(blue) with the largest time step that maintains stability.

computing another order of derivatives and careful treatments of
the singularities of the rotation representations. In SPD, no lin-
earization is needed, which not only greatly simplifies the deriva-
tion and implementation, but also saves in computational time. An-
other difference between implicit integrator and SPD lies in that
they have different stability characteristics. An implicit integrator
is unconditionally stable while SPD is stable under the condition
that Kd ≥ Kp∆t (Refer to the Appendix for a detailed stability anal-
ysis). This condition makes SPD less stable, but in return, SPD is
more computationally efficient. Moreover, implicit integrator usu-
ally overly damps the motion while SPD does not suffer from this
issue. For character animation, overly damped motion can produce
undesirable artifacts for timing-critical motions, such as catching a
basketball (Figure 1).

3.4 Experiments

To compare our method with a conventional PD controller, con-
sider a two-link pendulum with a hinge joint at each link. The
reference trajectory for the two hinge joints are q1(t) = cos(t) and
q2(t)= cos(t)+1.0 respectively. For each chosen gain, we simulate
PD and SPD with the largest time step that maintains stability. Fig-
ure 4 shows the relation between the gain and the largest time step
allowed. We sample kp at 3×10i, i = 1,2, · · · ,6 and set kd = kp∆t.
Note that the largest time step for SPD is bound by the reference
motion that is sampled at 30 frames per second, not by the stability
condition.

We compare the tracking errors between PD and SPD with different

gains at ∆t = 1
60 s. For clarity, we still choose the simple example of

a two-link pendulum with two hinge joints. Figure 2 and 3 show the
tracking error at the two DOFs respectively. When small or medium
gain are chosen, i.e. kp = 30 or 300, both PD and SPD controllers
are fairly stable, but SPD controller exhibits smaller oscillatory mo-
tion around the reference trajectory. When we apply larger gains,
i.e. kp = 3000 or 30000, SPD controller tracks the reference motion
closely while PD controller fails to maintain stability and eventually
crashes the simulation. Table 1 and 2 summarize the tracking errors
||e||∞ and ||e||2. The measurement for PD controllers is not avail-

able at kp = 3× 103 and 3× 104, because the simulation quickly
diverges due to the unstable control force. We also conduct exper-
iments on tracking the velocity of the reference trajectory (instead
of tracking zero velocity). The results are shown in Figure 2, Fig-
ure 3, Table 1, Table 2, as well as the accompanying video. We
observe small but noticeable reduction of tracking delay in both PD
and SPD controllers. In particular, when SPD tracks the reference
velocity, the tracking error decreases approximately linearly with

respect to the gain increase. This error reduction is not observed
when SPD tracks zero velocity. We hypothesize this error is due
to the tracking delay between the simulated motion and reference
motion.

4 Applications

Because SPD can replace PD without changing underlying con-
trol or simulation mechanisms, our method can potentially improve
all the existing applications that depend on PD controllers, such
as tracking a motion trajectory, maintaining a kinematic state, or
enforcing penalty constraints. Although the main contribution of
this paper is not building a specific application, we introduce three
possible ways to leverage SPD as a demonstration of the wide ap-
plicability of this method.

4.1 Tracking and Simulation

In computer animation, it is often useful to make a virtual charac-
ter perform a set of desired behaviors while responding to dynamic
changes and stimuli in the environment. One simple and effective
technique to do this is to use PD controllers to track a predefined
input sequence. Since the character’s motion results from a physi-
cal simulation, it can deviate from the input motion under external
forces. In this technique, the PD gains play an important role in
the visual fidelity of the resulting motion, especially when exter-
nal forces disturb the character. Large gains result in stiff reactions
while small gains cannot follow the desired behavior well. Zor-
dan and Hodgins [Zordan and Hodgins 2002] proposed a schedule
to modulate the gains according to the perturbation and achieved
pliable reactions. The main problem they encounter with this ap-
proach is that the simulation is unstable when tracking with high
gains. They circumvented this by using small time steps (0.67ms).
With SPD controllers, we do not have such problems. We can use
arbitrarily high gains while still using large time steps 33ms. With
50 times larger time steps, SPD is so efficient that the gain tuning
becomes an interactive process.

To demonstrate that SPD produces responsive motion using much
larger time steps, we first use the same schedule as [Zordan and
Hodgins 2002] to modulate the gains for the examples shown in
Figure 1. Different from Zordan and Hodgins [2002], which ap-
plied a controller to actively keep balance, we anchor the root of
the character using SPD servo with large gains. We demonstrate
three examples: soccer kicking, volleyball hitting and basketball
catching. Each input sequence was motion captured when a sub-
ject pretended to kick, hit or catch without a ball. The motion is
smooth because no momentum transfer from the ball occurred in
the mocap stage. After the simulation with SPD controllers, the
virtual character reacts to the perturbation caused by the ball. In the
first example, when the character kicks a very heavy ball, the speed
of the swinging leg slows down suddenly the moment it collides
with the ball. Then the leg gradually accelerates as if the character
is putting more effort towards making the ball move. In the vol-
leyball example, when the volleyball hits the character’s forearms
with high speed, its arms suddenly accelerate downwards due to
the momentum transfer. We imposed joint limits at the elbows in
this case because otherwise, the forearms would bend backwards
when hit by the volleyball. We enforce the joint limits by using
SPD controllers with large proportional gains kp = 109. When the
character catches a fast moving basketball, its elbows bend and the
hands move toward the chest to slow the ball down. When the ball
comes closer to the chest, the character leans backward to avoid to
be hit. The parameters we used for the examples are included in
Table3, where kt is the gain for tracking, kr is the gain for reaction,
te is the reaction duration and t f is the recover duration. Please re-

Figure 1: Tracking and simulation examples. Top row: four separate frames simulating kicking a heavy soccer ball. Middle row: four frames
simulating hitting a fast volleyball. Bottom row: four frames simulating catching a fast basketball. The left portion of each frame shows the
input sequence while the right portion shows the simulated motion with SPD controllers.

Figure 2: Comparisons of tracking errors at first degree of freedom between PD and SPD with various gains. Left: PD/SPD formulations
does not include a reference velocity. Right: PD/SPD formulations include a reference velocity.

Figure 3: Comparisons of tracking errors at second degree of freedom between PD and SPD with various gains. Left: PD/SPD formulations
does not include a reference velocity. Right: PD/SPD formulations include a reference velocity.

fer to [Zordan and Hodgins 2002] for a more detailed explanation
of each parameter.

Starting with a sequence of motion data, a user can tune the SPD
gains to simulate different reactions under different circumstances.
We want to emphasize that the parameter tuning is a simple task
because 1) the simulation is so efficient with large time steps that

we can tune the parameters and preview the result interactively. 2)
We can use and tune a global gain for all the degrees of freedom
without stability problems. In the previous PD formulation, gains
are usually chosen separately for each degree of freedom. One im-
portant reason is that a single gain might be too loose for the root
while too stiff for the hand. The result is that the root does not track

kp PD PD with ¯̇q SPD SPD with ¯̇q
||e||∞ ||e||2 ||e||∞ ||e||2 ||e||∞ ||e||2 ||e||∞ ||e||2

3×101 0.4630 4.0542 0.4585 4.0317 0.3164 3.1939 0.3210 3.1955

3×102 0.0598 0.5188 0.0505 0.4658 0.0312 0.4047 0.0297 0.3451

3×103 NA NA NA NA 0.0174 0.2301 0.0023 0.0330

3×104 NA NA NA NA 0.0167 0.2293 0.0001 0.0016

Table 1: Comparisons of error for the first degree of freedom when tracking a reference trajectory using different PD formulations.

kp PD PD with ¯̇q SPD SPD with ¯̇q
||e||∞ ||e||2 ||e||∞ ||e||2 ||e||∞ ||e||2 ||e||∞ ||e||2

3×101 0.2094 1.8177 0.2048 1.7778 0.1049 1.0817 0.1198 1.0652

3×102 0.0364 0.2826 0.0225 0.1601 0.0244 0.2466 0.0082 0.0964

3×103 NA NA NA NA 0.0174 0.2294 0.0008 0.0087

3×104 NA NA NA NA 0.0167 0.2295 0.0003 0.0017

Table 2: Comparisons of error for the second degree of freedom when tracking a reference trajectory using different PD formulations.

Animation kt kr kd/(kp∆t) te t f

soccer(light) 25000 5 8 0.1 0.5
soccer(heavy) 25000 5 96 0.1 0.5

volleyball(slow) 25000 5 8 0.1 0.5
volleyball(fast) 25000 5 16 0.1 0.5

basketball(slow) 25000 5 16 0.6 50
basketball(fast) 25000 1 16 0.6 50

Table 3: Parameters used in the tracking and simulation examples.

well but the hand starts to move unstably. Tuning a 42-degree-of-
freedom character with 42 gains is tedious and frustrating. With our
formulation, we only need to tune one global gain.

4.2 Keyframe Interpolation

Keyframe animation is one of the most fundamental techniques to
create character animation. Many artists appreciate the full control-
lablility it provides, but very few would advocate for its ease of use
in practice. In particular, keyframes for complex dynamic motion
can be tedious to create, and the results seldom look realistic.

We propose a new keyframe interpolation technique to simplify the
process of creating dynamic motion. Our method works particu-
larly well when passive, secondary motion is evident in the scene.
We simulate the articulated system using two SPD controllers with
time-varying gains to track the adjacent keyframes. The time-
varying gain profile determines the timing characteristics of the mo-
tion and can be designed by the user. We illustrate two possible pro-
file of the gains in Figure 5. Linearly blending two gains (Left) re-
sults in stiff motions. The second profile uses higher order polyno-
mials. The sharp contrast between the gain at the keyframe and the
gain at inbetween frames ensures that the keyframes are well sat-
isfied while the motion remains compliant. The new interpolation
method has three advantages: 1) the interpolation is physics-based;
2) the interpolation is local, which only requires the two adjacent
keyframes and 3) the timing of the interpolation can be controlled
by the user.

We verify our new interpolation method using a “toy mouse” exam-
ple. Figure 6 compares our results with an interpolated sequence us-
ing cubic splines. Because we only specify the root position and ori-
entation of the mouse at each keyframe, the tail appears rigid in the
interpolated motion. In contrast, our method generates realistic sec-
ondary motion on the tail as the mouse accelerates and makes turns.
We choose kt = 130msup, kd = 10kp∆t for each degree of freedom,

where msup is the total mass supported by the joint. We use the

gain profile kpi(t) = (1.0−α)24kt and kpi+1(t) = (α24 + 0.005)kt

to cross fade the gains, where α is the normalized distance to the ith
keyframe. Our method is suited for motions with sudden changes
in acceleration and less effective when the motion is inherently
smooth.

We also compare SPD with PD controllers. The stability issue
with PD prevents us from using large gains (simulation explodes
quickly with kp = 10msup). Smaller gains (kp = 0.005msup) pro-
duce more stable motion, but the interpolated motion does not meet
the keyframes at the specified time. The stability of PD controllers
is also sensitive to the physical properties of the model. Because
the tail is represented by a long chain of light links, the mass matrix
is often ill-conditioned, which exacerbates the stability problem of
the PD controller.

Figure 5: Two examples of the profile of PD gains.

Figure 6: Two interpolated frames from the “toy mouse” example.
The red mice are the keyframes while the blue one calculated from
the interpolation. The left portion of each image is generated using
the cubic spline interpolation while the right portion is generated
using our method.

Figure 7: 3D tinkertoy examples. Left: one particle connected
with the other one sliding down along a smooth helix curve. Right:
one particle connected with the other one sliding down along a
piecewise linear helix curve.

4.3 Extension to Constrained Simulation

One simple yet widely used implementation of constrained dynam-
ics is to use the penalty method. Since the penalty method is ana-
logues to using a PD controller to track the constraint, these meth-
ods share the same problem. To ensure that the constraints are al-
ways satisfied, the spring constant must be large enough to over-
power all competing forces, and this means that very small devi-
ations will induce large restoring forces. However, when a large
spring constant is chosen, the penalty method is numerically un-
stable unless sufficiently small time steps are used. To overcome
this numerical difficulty, Witkin [1997] used Lagrangian multipli-
ers to directly compute the constraint forces. Their method favors
a differentiable parameterization of the constraint, which makes it
difficult to apply to more general cases.

Our method offers an elegant way to stabilize the penalty method,
so that both stiff parameters and large time steps can be achieved
simultaneously. Instead of computing the penalty force using the
current state, we predict the deviation from the constraint in the
next time step and plan the constraint force accordingly. In other
words, we use a stable PD controller with large gains to closely
track the constraints.

We demonstrate our method with a simple 3D Tinkertoy exam-
ple. We implemented two different types of constraints: particle-
on-curve and distance constraints. For the former constraint, we
represent the curve as a large number of piecewise line segments.
In the simulation, we first predict the position of the particle qn+1

at the next step using Equation (3). We then find out the nearest
position on the curve q̄n+1. As long as the curve is smooth, the di-
rection q̄n+1 −qn+1 is orthogonal to the curve and agrees with the
direction d of the control force. We calculate the constraint force
using our stable PD controller.

τ =−kp(q
n+1 − q̄n+1)− kdddT q̇n+1 (12)

Note that the second term on the right hand side of Equation(12) is
different from that of Equation (2) because only the velocity along
the direction d violates the constraint and needs damped out. After
plugging Equation (12) into the Newton’s second law, we get the
modified equation of motion for the on-curve particle:

(M+ kd∆tddT)q̈ =−kp(q
n + q̇n

∆t − q̄n+1)− kdddT q̇n (13)

where M is a diagonal mass matrix for the particle.

For the distance constraint, two particles should always stay r0 apart
as if a massless rod connects them. Similar to the particle-on-curve

constraint, we first predict the distance between the two particles

|qn+1
1 −qn+1

2 | at the next time step. The constraint force is exerted

along the line between the two particles d=(qn+1
1 −qn+1

2)/|qn+1
1 −

qn+1
2 |. Similarly, the constraint force should only damp out the ve-

locity along the direction d. Using the stable PD controller formu-
lation, we get

τ1 =−kp(q
n+1
1 −qn+1

2 − r0d)− kdddT (q̇n+1
1 − q̇n+1

2) (14)

and

τ2 =−τ1 (15)

Plugging these into the Newton’s second law and rearranging the
terms, we get the modified equation of motion for the distance-
constrained pair of particles:

(M+ kd∆tddT D)q̈n

= −kp(D(qn +∆tq̇n)− r0d)− kdddT Dq̇n (16)

where

D =

[

I −I
−I I

]

In the first experiment, we set up a smooth helix using 2400 short
line segments. A green particle is constrained to be on a helix (using
a particle-on-curve constraint) and a purple particle is connected to
the green one by a massless rigid rod (using a distance constraint).
The only forces throughout the simulation are the gravity and the
constraint forces. When the simulation starts, the green particle
slides down the helix while the purple one acts as a swinging pen-
dulum.

In the second experiment, we test the same scene except that we
use only 24 instead of 2400 line segments to approximate the helix.
As a result, the curve is composed of many non-differentiable sharp
corners. This setting imposes extreme difficulties to the simulation
because 1) any methods that requires analytical derivatives is not
applicable and 2) the numerical derivative near the discontinuities
introduces large errors, which can easily drive the simulation out of
control. We set kp = 1016 and kd = 1.5kp∆t for both constraints.
Even though we notice some oscillations when the green particle
passes the sharp turns in the second setting, the oscillations damp
out quickly and never accumulate. The simulation is stable in both
experiments.

With a simple modification of the penalty method, we can use high
gains and large time steps simultaneously without raising any nu-
merical stability issue. We believe this idea can be further extended
to handle other types of constraints, such as collision, contact and
more.

5 Limitations

Although we have successfully used SPD in serveral settings, it
does have some limitations. First, despite the fact that SPD over-
comes stability issues, it is still a PD-like control that cannot be
used for sophisticated control strategies. For example, it does not
explicitly solve the problem of balance or long-horizon planning.
Consequently, it is difficult to create motion using SPD that is con-
siderably different from the reference motion.

Second, SPD can require extra computational resources in some
settings. Note that the computation of control forces is intertwined
with the forward simulation step. For applications that explicitly
process both control and forward simulation, SPD does not require
additional computation because the effect of the control force can
be computed at the same time as simulation. Some applications

handle control and simulation separately, however, such as using a
black-box simulator or controlling a robot (no simulation needed).
For such applications, additional computational resources must be
used for SPD to compute control forces that are independent of the
simulation.

Third, since we predict next state using the first order Taylor ex-
pansion, we have no mathematical proof that SPD works with any
integration schemes. We have implemented and tested that SPD is
compatible with Explicit Euler, Midpoint, RK4 and implicit inte-
gration schemes.

Finally, although we demonstrate that SPD can replace penalty
methods to enforce most constraints, our current implementation
is ill-suited for unilateral constraints such as foot-ground contact
because it can generate pulling forces towards the ground. Adapt-
ing SPD to handle such constraints is a fruitful area for future work.
Using SPD for unilateral constraints could potentially improve the
performance of a simulation drastically, as the time step does not
need to be reduced for handling collision.

6 Conclusion

In this paper, we presented a new formulation of a PD servo that de-
couples the dependency of high gain control and small time steps.
Our approach uses the state of the character in the next time step
to calculate stable control forces. Since the PD controller serves as
a fundamental building block for many sophisticated control algo-
rithms, the improvement of PD can potentially have a wide impact
on practical applications. We have demonstrated the applicability
of our method in various examples, including tracking and simula-
tion, keyframe interpolation and constrained dynamics.

For future research, we would like to explore automatic methods for
tuning the gains for the SPD controllers. It is difficult and inefficient
to tune PD controllers using search algorithms or optimization tech-
niques because the stability of the motion is highly sensitive to the
combinations of gains, resulting in a very “jagged” search space.
On the other hand, SPD is stable with both high gains and large
time steps. Using SPD, such a search procedure can be conducted
more efficiently and will be more likely to converge to an optimal
solution.

A Appendix: Stability Analysis

We choose kd ≥ kp∆t for the sake of stability. In the one dimen-
sional case, kd = kp∆t gives the fastest convergence to the desired
trajectory. We have shown in Section 3.2 that q converges to q̄ in
two time steps 1. We will analyze the stability of SPD in two cases:
kd ≥ kp∆t and kd ≤ kp∆t. Without loss of generality, we can write
kd =αkp∆t where α ≥ 0. From Equation (8), it is easy to verify that
the acceleration towards the desired trajectory is monotonically in-
creasing with respect to kp and decreasing with respect to α when
the other parameters are fixed. We already know that q does not
overshoot the desired trajectory when α = 1 and kp = ∞. Thus q
cannot overshoot the target trajectory with less stringent case α ≥ 1
(more damping) or kp ≤ ∞ (less stiffness). We conclude that the
controller is stable with arbitrarily gains in the case of kd ≥ kp∆t.
When α < 1, however, stability cannot be guaranteed.

In a multi-dimensional dynamic system, the interdependency of
DOFs becomes very complex and the above one-dimensional anal-
ysis does not directly apply. However, we can argue that the lower

1Two steps are the minimum time for q to converge using explicit Euler

because the integration from the acceleration q̈ to the displacement q needs

two time steps.

bound, kd ≥ kp∆t, still plays a crucial role in stability for multi-
dimensional systems. Suppose we have a highly stiff system with a
very large Kp, Kd will also be very large due to the lower bound,
Kd ≥ Kp∆t. Because SPD adds Kd to the mass matrix (refer to
Equation(11)), M + Kd∆t becomes a near-diagonal matrix when
Kd dominates M. In this case, the results of the stability analysis
for one-dimensional case hold well. When Kp is small, rigorous
analysis is difficult to achieve but small gains usually do not induce
instability in practice. From our empirical data, we have never ex-
perienced any stability problem under the condition: Kd ≥ Kp∆t.

References

BARAFF, D., AND WITKIN, A. 1998. Large steps in cloth simu-
lation. In SIGGRAPH ’98: Proceedings of the 25th annual con-
ference on Computer graphics and interactive techniques, ACM,
New York, NY, USA, 43–54.

HODGINS, J. K., WOOTEN, W. L., BROGAN, D. C., AND

O’BRIEN, J. F. 1995. Animating human athletics. In Pro-
ceedings of SIGGRAPH 95, 71–78.

MOORE, M., AND WILHELMS, J. 1988. Collision detection and
response for computer animation. In Computer Graphics, 289–
298.

NEFF, M., AND FIUME, E. 2002. Modeling tension and relax-
ation for computer animation. In SCA ’02: Proceedings of the
2002 ACM SIGGRAPH/Eurographics symposium on Computer
animation, ACM, New York, NY, USA, 81–88.

VAN DE PANNE, M. 1996. Parameterized gait synthesis. IEEE
Computer Graphics and Applications 16, 40–49.

WEINSTEIN, R., GUENDELMAN, E., AND FEDKIW, R. 2008.
Impulse-based control of joints and muscles. IEEE Transactions
on Visualization and Computer Graphics 14, 1, 37–46.

WILHELMS, J. 1986. Virya—a motion control editor for kinematic
and dynamic animation. In Proceedings on Graphics Interface
’86/Vision Interface ’86, Canadian Information Processing Soci-
ety, Toronto, Ont., Canada, Canada, 141–146.

WITKIN, A., GLEICHER, M., AND WELCH, W. 1990. Interactive
dynamics. In COMPUTER GRAPHICS, 11–21.

WITKIN, A. 1997. Physically based modeling: Principles and
practice – constrained dynamics. In COMPUTER GRAPHICS,
11–21.

YIN, K., CLINE, M. B., AND PAI, D. K. 2003. Motion pertur-
bation based on simple neuromotor control models. In Pacific
Graphics.

ZORDAN, V. B., AND HODGINS, J. K. 1999. Tracking and mod-
ifying upper-body human motion data with dynamic simulation.
In In Computer Animation and Simulation 99, 13–22.

ZORDAN, V. B., AND HODGINS, J. K. 2002. Motion capture-
driven simulations that hit and react. In SCA ’02: Proceedings
of the 2002 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM, New York, NY, USA, 89–96.

