
Soft Body Locomotion:

Supplementary Document

Jie Tan Greg Turk

Georgia Institute of Technology

C. Karen Liu

Abstract

This supplementary document describes implementation details of
a QPCC solver for contact modeling. A simple example is provided
to help the readers test their implementation.

1 QPCC for Contact

The QPCC problem for contact modeling is:

min
ṗn+1,u,f⊥,f‖,λ

G(ṗn+1
,u) (1)

subject to

ulb ≤ u ≤ uub

M̃ṗ
n+1 = fc +Au+ f̃

n
(2)

0 ≤

f⊥
f‖
λ

 ⊥

NT ṗn+1

DT ṗn+1 +Eλ

µf⊥ −ET f‖

 ≥ 0 (3)

where G(ṗn+1,u) is a convex quadratic objective function of next
velocities ṗn+1 and control variables u, which are bounded by ulb

and uub.

Equation 2 is the discretized dynamic equation (Equation 8 in the

paper), where M̃ is the mass matrix with terms from implicit inte-
grator, fc and Au are the contact force and control force (scaled by

the time step) respectively, and f̃n accounts for all other terms in
the dynamic equation.

Equation 3 is the LCP formulation to regulate contact velocity and
contact force, fc = Nf⊥+Df‖, where N is the unit normal vector,
D is a set of tangential directions at the contact point, and f⊥ and
f‖ are the magnitudes of normal and tangent forces. µ is the friction
coefficient and λ is an auxiliary variable whose physical meaning
is related to the tangent velocity of a sliding contact. This form is
slightly more general than the QPCC formulation (Equation 11) in
the paper.

2 Implementation of QPCC Solver for Con-

tact

Algorithm 1 summarizes the implementation of our QPCC solver.
The solver takes the QPCC (Equation 1-3) as input and outputs the
minimizer x∗ and minimum objective function value f∗. Our itera-
tive QPCC solver starts with an initial guess of the contact situation,
which is a set of linear constraints that are compatible with the com-
plementarity conditions. Function GenerateInitialGuess in Line 8
generates such an initial guess. We usually choose static contact

Algorithm 1: Pseudo-code of the QPCC solver.

1 (x∗, f∗) = Solve(QPCC)
2 begin
3 ithIter = 0;
4 f∗ ←∞;
5 x∗ ← null;
6 priority queue← [];
7 visitedQP set← {};
8 CCSpec← GenerateInitialGuess();
9 QP← GenerateQP(QPCC, CCSpec);

10 (QP.minimizer, QP.fval)← QP.Solve();
11 priority queue.Enqueue(QP);
12 while visitedQP set.Size() < maxNumVisitedQP and

priority queue.Empty() = False do
13 QP← priority queue.Dequeue();
14 visitedQP set.Add(QP);
15 if QP.fval < f∗ then
16 f∗ ← QP.fval;
17 x∗ ← QP.minimizer;

18 childQP list← GenerateChildQP(QPCC, QP, CCSpec);
19 foreach childQP in childQP list do
20 if visitedQP set.Find(childQP) then
21 continue;

22 (childQP.minimizer, childQP.fval)←
childQP.Solve();

23 priority queue.Enqueue(childQP);

24 ithIter← ithIter + 1;

25 return (x∗, f∗);

situation as the initial guess:

0 ≤ f⊥, N
T
ṗ
n+1 = 0

0 ≤ f‖, D
T
ṗ
n+1 +Eλ = 0

0 = λ, µf⊥ −E
T
f‖ ≥ 0

Occasionally, this initial guess is inconsistent with the dynamic
constraints (Equation 2), resulting in an infeasible problem. In such
a case, we solve the Mixed LCP problem (Equation 2 and 3), as-
suming u = 0, to obtain a feasible initial guess. The output of
GenerateInitialGuess is a boolean array CCSpec that specifies a
set of linear constraints from the complementarity conditions. If
the ith entry of CCSpec is True, we choose the linear constraints
Cond1 = 0 and Cond2 ≥ 0 for the ith pair of complementarity
conditions 0 ≤ Cond1 ⊥ Cond2 ≥ 0. If it is False, we choose
Cond1 ≥ 0 and Cond2 = 0.

Function GenerateQP in Line 9 generates a QP by replacing the
complementarity conditions of QPCC with the linear constraints
specified in CCSpec. In Line 10, we solve the initial QP and record
its minimizer and minimal function value. We add this QP to an
priority queue, which sorts the QP’s by their function values in an

increasing order. Line 12 starts the iteration, which terminates until
the number of explored QP’s exceeds a threshold or the priority
queue is empty.

In each iteration, we retrieve the QP at the head of the queue (Line
13), add it to the set of explored QP’s and update f∗ and x∗ if nec-
essary (Line 14-17). Function GenerateChildQP generates a list of
new QP’s by pivoting complementarity conditions (Line 18), which
we will discuss in the next paragraph. For each new QP in the list,
if it has been already explored, we discard it (Line 20-21). Other-
wise, we solve the new QP and add it to the queue (Line 22-23).
When the algorithm terminates, we output the best minimizer and
function value that we found during the iterations (Line 25).

We summarize the detail of GenerateChildQP in Algorithm 2. The
input of GenerateChildQP includes QPCC, current QP and its con-
straint specification for complementarity conditions: CCSpec. In
Line 4, we extract the solution for each contact from the mini-
mizer of the QP. Function ExtractFromMinimizer selects the correct
components associated with a specific contact point from the mini-
mizer. In Line 6, we identify the index of the normal force-velocity
condition pair for the ith contact, where IdInCC returns the index
of a specific pair among all complementarity conditions. Line 7
identifies the case of contact establishment and performs the corre-
sponding pivoting (Line 8). Line 11 checks whether the contact is

Algorithm 2: Generate a list of new QP’s based on the minimizer
of the current QP

1 QP list = GenerateChildQP(QPCC, QP, CCSpec)
2 begin
3 foreach i in Contacts.Size() do

4 (ṗ, f i
⊥, f i‖, λi)← ExtractFromMinimizer(QP.minimizer);

5 newCCSpec← CCSpec;

6 id← IdInCC(0 ≤ f i
⊥ ⊥ (Ni)T ṗ ≥ 0);

7 if CCSpec[id] = True and (Ni)T ṗ=0 then
8 newCCSpec[id]← False;
9 newQP← GenerateQP(QPCC, newCCSpec);

10 QP list.Add(newQP);

11 else if CCSpec[id] = False and f i
⊥=0 then

12 newCCSpec[id]← True;
13 newQP← GenerateQP(QPCC, newCCSpec);
14 QP list.Add(newQP);

15 id← IdInCC(0 ≤ λi
⊥ ⊥ µf i

⊥ − (Ei)T f i‖ ≥ 0);

16 id list← IdInCC(0 ≤ f i‖ ⊥ (Di)T ṗ+Eiλi ≥ 0);

17 if CCSpec[id] = True and µf i
⊥ − (Ei)T f i‖ = 0 then

18 newCCSpec[id] = False;
19 foreach id1 in id list do
20 newCCSpec[id1]← True;

21 f ← Dif i‖;

22 j← argmaxk f
T (Di.Col(k));

23 newCCSpec[j]← False;
24 newQP← GenerateQP(QPCC, newCCSpec);
25 QP list.Add(newQP);

26 else if CCSpec[id] = False and λi = 0 then
27 newCCSpec[id]← True;
28 foreach id1 in id list do
29 newCCSpec[id1]← False;

30 newQP← GenerateQP(QPCC, newCCSpec);
31 QP list.Add(newQP);

32 return QP list;

about to break and pivots the constraint accordingly, which enables
the contact breakage (Line 12). Line 15-16 identify the indices of
friction cone and friction direction conditions associated with the
ith contact. If the static friction force has reached the boundary of
friction cone, we switch the contact situation from static to sliding
(Line 17-18) and estimate the sliding friction direction using the
static friction direction (Line 19-23). We apply the opposite pivot-
ing (from sliding to static) when the sliding velocity reaches zero
(Line 26-29). A new QP is generated under the new contact situa-
tion and added into the list of new QP’s (Line 9-10, 13-14, 24-25
and 30-31) whenever pivoting happens. After processing through
all the contact points, the function returns the new QP list.

3 Test Case

It is nontrivial to test and debug an implementation of a QPCC
solver. We propose the following test case problem: A particle with
mass m lies on the ground and it wants to jump up. The particle
can only control a jumping force fN, where N = (0, 1, 0) is the
up direction. The magnitude of the jumping force is bounded by
0 ≤ f ≤ fub. What is the optimal jumping force if the goal is to
jump as high as possible? The answer is trivially using maximal
force possible. However, the solution is not necessarily fub under
some contact configuration. Our hope is that the QPCC solver can
find the optimal contact configuration such that the optimal solution
reaches fub.

One formulation of the above problem is:

min
ṗ,f,f⊥,f‖,λ

− f
2

subject to

0 ≤ f ≤ fub

mṗ = ∆t(mg +Nf⊥ +Df‖ +Nf)

0 ≤

f⊥
f‖
λ

 ⊥

NT ṗ

DT ṗ+Eλ

µf⊥ −ET f‖

 ≥ 0

where ∆t is the time step used in the simulation and g is gravity.

It is easy to verify that the minimizer is

(ṗ, f, f⊥, f‖, λ) = (
∆t

m
(mg +Nfub), fub, 0,0, 0)

and the optimal function value is −f2
ub. A correctly implemented

QPCC solver based on Algorithm 1 and 2 should converge to this
optimal solution in two iterations. In the first iteration, an initial QP
using static contact situation is generated and solved. The solution
should be

(ṗ, f, f⊥, f‖, λ) = (0, |mg|, 0,0, 0)

The function GenerateChildQP will pivot the constraint to switch
from static contact to contact breakage and generate a new QP. In
the second iteration, the solution of this new QP is exactly the opti-
mal solution of the QPCC problem.

Once the implementation passes this simple test case, more chal-
lenging cases should be tested. For example, control a single rigid
body, an articulated rigid-body system, or a soft body with the pres-
ence of contact.

